Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssdff Structured version   Visualization version   GIF version

Theorem rnmptssdff 45171
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
rnmptssdff.1 𝑥𝜑
rnmptssdff.2 𝑥𝐴
rnmptssdff.3 𝑥𝐶
rnmptssdff.4 𝐹 = (𝑥𝐴𝐵)
rnmptssdff.5 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
rnmptssdff (𝜑 → ran 𝐹𝐶)

Proof of Theorem rnmptssdff
StepHypRef Expression
1 rnmptssdff.1 . . 3 𝑥𝜑
2 rnmptssdff.5 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
31, 2ralrimia 3254 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
4 rnmptssdff.2 . . 3 𝑥𝐴
5 rnmptssdff.3 . . 3 𝑥𝐶
6 rnmptssdff.4 . . 3 𝐹 = (𝑥𝐴𝐵)
74, 5, 6rnmptssff 45170 . 2 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
83, 7syl 17 1 (𝜑 → ran 𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1535  wnf 1778  wcel 2104  wnfc 2886  wral 3057  wss 3963  cmpt 5232  ran crn 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ral 3058  df-rex 3067  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-fun 6560  df-fn 6561  df-f 6562
This theorem is referenced by:  saliunclf  46228
  Copyright terms: Public domain W3C validator