Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssdff Structured version   Visualization version   GIF version

Theorem rnmptssdff 45262
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
rnmptssdff.1 𝑥𝜑
rnmptssdff.2 𝑥𝐴
rnmptssdff.3 𝑥𝐶
rnmptssdff.4 𝐹 = (𝑥𝐴𝐵)
rnmptssdff.5 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
rnmptssdff (𝜑 → ran 𝐹𝐶)

Proof of Theorem rnmptssdff
StepHypRef Expression
1 rnmptssdff.1 . . 3 𝑥𝜑
2 rnmptssdff.5 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
31, 2ralrimia 3237 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
4 rnmptssdff.2 . . 3 𝑥𝐴
5 rnmptssdff.3 . . 3 𝑥𝐶
6 rnmptssdff.4 . . 3 𝐹 = (𝑥𝐴𝐵)
74, 5, 6rnmptssff 45261 . 2 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
83, 7syl 17 1 (𝜑 → ran 𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2877  wral 3045  wss 3916  cmpt 5190  ran crn 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-fun 6515  df-fn 6516  df-f 6517
This theorem is referenced by:  saliunclf  46313
  Copyright terms: Public domain W3C validator