| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gchdju1 | Structured version Visualization version GIF version | ||
| Description: An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| gchdju1 | ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 8558 | . . . . . 6 ⊢ 1o ∈ ω | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → 1o ∈ ω) |
| 3 | djudoml 10079 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ 1o ∈ ω) → 𝐴 ≼ (𝐴 ⊔ 1o)) | |
| 4 | 2, 3 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 ⊔ 1o)) |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin) | |
| 6 | nnfi 9081 | . . . . . . . . 9 ⊢ (1o ∈ ω → 1o ∈ Fin) | |
| 7 | 1, 6 | mp1i 13 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ Fin → 1o ∈ Fin) |
| 8 | fidomtri2 9890 | . . . . . . . 8 ⊢ ((𝐴 ∈ GCH ∧ 1o ∈ Fin) → (𝐴 ≼ 1o ↔ ¬ 1o ≺ 𝐴)) | |
| 9 | 7, 8 | sylan2 593 | . . . . . . 7 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1o ↔ ¬ 1o ≺ 𝐴)) |
| 10 | 1, 6 | mp1i 13 | . . . . . . . 8 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o ∈ Fin) |
| 11 | domfi 9103 | . . . . . . . . 9 ⊢ ((1o ∈ Fin ∧ 𝐴 ≼ 1o) → 𝐴 ∈ Fin) | |
| 12 | 11 | ex 412 | . . . . . . . 8 ⊢ (1o ∈ Fin → (𝐴 ≼ 1o → 𝐴 ∈ Fin)) |
| 13 | 10, 12 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1o → 𝐴 ∈ Fin)) |
| 14 | 9, 13 | sylbird 260 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (¬ 1o ≺ 𝐴 → 𝐴 ∈ Fin)) |
| 15 | 5, 14 | mt3d 148 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o ≺ 𝐴) |
| 16 | canthp1 10548 | . . . . 5 ⊢ (1o ≺ 𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴) |
| 18 | 4, 17 | jca 511 | . . 3 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) |
| 19 | gchen1 10519 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴 ⊔ 1o)) | |
| 20 | 18, 19 | mpdan 687 | . 2 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 ⊔ 1o)) |
| 21 | 20 | ensymd 8930 | 1 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 𝒫 cpw 4551 class class class wbr 5092 ωcom 7799 1oc1o 8381 ≈ cen 8869 ≼ cdom 8870 ≺ csdm 8871 Fincfn 8872 ⊔ cdju 9794 GCHcgch 10514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-oi 9402 df-dju 9797 df-card 9835 df-gch 10515 |
| This theorem is referenced by: gchinf 10551 gchdjuidm 10562 gchpwdom 10564 |
| Copyright terms: Public domain | W3C validator |