![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gchdju1 | Structured version Visualization version GIF version |
Description: An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
gchdju1 | ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8641 | . . . . . 6 ⊢ 1o ∈ ω | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → 1o ∈ ω) |
3 | djudoml 10181 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ 1o ∈ ω) → 𝐴 ≼ (𝐴 ⊔ 1o)) | |
4 | 2, 3 | sylan2 592 | . . . 4 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 ⊔ 1o)) |
5 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin) | |
6 | nnfi 9169 | . . . . . . . . 9 ⊢ (1o ∈ ω → 1o ∈ Fin) | |
7 | 1, 6 | mp1i 13 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ Fin → 1o ∈ Fin) |
8 | fidomtri2 9991 | . . . . . . . 8 ⊢ ((𝐴 ∈ GCH ∧ 1o ∈ Fin) → (𝐴 ≼ 1o ↔ ¬ 1o ≺ 𝐴)) | |
9 | 7, 8 | sylan2 592 | . . . . . . 7 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1o ↔ ¬ 1o ≺ 𝐴)) |
10 | 1, 6 | mp1i 13 | . . . . . . . 8 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o ∈ Fin) |
11 | domfi 9194 | . . . . . . . . 9 ⊢ ((1o ∈ Fin ∧ 𝐴 ≼ 1o) → 𝐴 ∈ Fin) | |
12 | 11 | ex 412 | . . . . . . . 8 ⊢ (1o ∈ Fin → (𝐴 ≼ 1o → 𝐴 ∈ Fin)) |
13 | 10, 12 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1o → 𝐴 ∈ Fin)) |
14 | 9, 13 | sylbird 260 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (¬ 1o ≺ 𝐴 → 𝐴 ∈ Fin)) |
15 | 5, 14 | mt3d 148 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o ≺ 𝐴) |
16 | canthp1 10651 | . . . . 5 ⊢ (1o ≺ 𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴) |
18 | 4, 17 | jca 511 | . . 3 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) |
19 | gchen1 10622 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴 ⊔ 1o)) | |
20 | 18, 19 | mpdan 684 | . 2 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 ⊔ 1o)) |
21 | 20 | ensymd 9003 | 1 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 𝒫 cpw 4597 class class class wbr 5141 ωcom 7852 1oc1o 8460 ≈ cen 8938 ≼ cdom 8939 ≺ csdm 8940 Fincfn 8941 ⊔ cdju 9895 GCHcgch 10617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-oi 9507 df-dju 9898 df-card 9936 df-gch 10618 |
This theorem is referenced by: gchinf 10654 gchdjuidm 10665 gchpwdom 10667 |
Copyright terms: Public domain | W3C validator |