| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gchdju1 | Structured version Visualization version GIF version | ||
| Description: An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| gchdju1 | ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 8652 | . . . . . 6 ⊢ 1o ∈ ω | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → 1o ∈ ω) |
| 3 | djudoml 10199 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ 1o ∈ ω) → 𝐴 ≼ (𝐴 ⊔ 1o)) | |
| 4 | 2, 3 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 ⊔ 1o)) |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin) | |
| 6 | nnfi 9181 | . . . . . . . . 9 ⊢ (1o ∈ ω → 1o ∈ Fin) | |
| 7 | 1, 6 | mp1i 13 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ Fin → 1o ∈ Fin) |
| 8 | fidomtri2 10008 | . . . . . . . 8 ⊢ ((𝐴 ∈ GCH ∧ 1o ∈ Fin) → (𝐴 ≼ 1o ↔ ¬ 1o ≺ 𝐴)) | |
| 9 | 7, 8 | sylan2 593 | . . . . . . 7 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1o ↔ ¬ 1o ≺ 𝐴)) |
| 10 | 1, 6 | mp1i 13 | . . . . . . . 8 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o ∈ Fin) |
| 11 | domfi 9203 | . . . . . . . . 9 ⊢ ((1o ∈ Fin ∧ 𝐴 ≼ 1o) → 𝐴 ∈ Fin) | |
| 12 | 11 | ex 412 | . . . . . . . 8 ⊢ (1o ∈ Fin → (𝐴 ≼ 1o → 𝐴 ∈ Fin)) |
| 13 | 10, 12 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1o → 𝐴 ∈ Fin)) |
| 14 | 9, 13 | sylbird 260 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (¬ 1o ≺ 𝐴 → 𝐴 ∈ Fin)) |
| 15 | 5, 14 | mt3d 148 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o ≺ 𝐴) |
| 16 | canthp1 10668 | . . . . 5 ⊢ (1o ≺ 𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴) |
| 18 | 4, 17 | jca 511 | . . 3 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) |
| 19 | gchen1 10639 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴 ⊔ 1o)) | |
| 20 | 18, 19 | mpdan 687 | . 2 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 ⊔ 1o)) |
| 21 | 20 | ensymd 9019 | 1 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 𝒫 cpw 4575 class class class wbr 5119 ωcom 7861 1oc1o 8473 ≈ cen 8956 ≼ cdom 8957 ≺ csdm 8958 Fincfn 8959 ⊔ cdju 9912 GCHcgch 10634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-oi 9524 df-dju 9915 df-card 9953 df-gch 10635 |
| This theorem is referenced by: gchinf 10671 gchdjuidm 10682 gchpwdom 10684 |
| Copyright terms: Public domain | W3C validator |