MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdju1 Structured version   Visualization version   GIF version

Theorem gchdju1 10343
Description: An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
gchdju1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴)

Proof of Theorem gchdju1
StepHypRef Expression
1 1onn 8432 . . . . . 6 1o ∈ ω
21a1i 11 . . . . 5 𝐴 ∈ Fin → 1o ∈ ω)
3 djudoml 9871 . . . . 5 ((𝐴 ∈ GCH ∧ 1o ∈ ω) → 𝐴 ≼ (𝐴 ⊔ 1o))
42, 3sylan2 592 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 ⊔ 1o))
5 simpr 484 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
6 nnfi 8912 . . . . . . . . 9 (1o ∈ ω → 1o ∈ Fin)
71, 6mp1i 13 . . . . . . . 8 𝐴 ∈ Fin → 1o ∈ Fin)
8 fidomtri2 9683 . . . . . . . 8 ((𝐴 ∈ GCH ∧ 1o ∈ Fin) → (𝐴 ≼ 1o ↔ ¬ 1o𝐴))
97, 8sylan2 592 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1o ↔ ¬ 1o𝐴))
101, 6mp1i 13 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o ∈ Fin)
11 domfi 8935 . . . . . . . . 9 ((1o ∈ Fin ∧ 𝐴 ≼ 1o) → 𝐴 ∈ Fin)
1211ex 412 . . . . . . . 8 (1o ∈ Fin → (𝐴 ≼ 1o𝐴 ∈ Fin))
1310, 12syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1o𝐴 ∈ Fin))
149, 13sylbird 259 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (¬ 1o𝐴𝐴 ∈ Fin))
155, 14mt3d 148 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o𝐴)
16 canthp1 10341 . . . . 5 (1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
1715, 16syl 17 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
184, 17jca 511 . . 3 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴))
19 gchen1 10312 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴 ⊔ 1o))
2018, 19mpdan 683 . 2 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 ⊔ 1o))
2120ensymd 8746 1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2108  𝒫 cpw 4530   class class class wbr 5070  ωcom 7687  1oc1o 8260  cen 8688  cdom 8689  csdm 8690  Fincfn 8691  cdju 9587  GCHcgch 10307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-dju 9590  df-card 9628  df-gch 10308
This theorem is referenced by:  gchinf  10344  gchdjuidm  10355  gchpwdom  10357
  Copyright terms: Public domain W3C validator