MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdju1 Structured version   Visualization version   GIF version

Theorem gchdju1 10168
Description: An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
gchdju1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴)

Proof of Theorem gchdju1
StepHypRef Expression
1 1onn 8308 . . . . . 6 1o ∈ ω
21a1i 11 . . . . 5 𝐴 ∈ Fin → 1o ∈ ω)
3 djudoml 9696 . . . . 5 ((𝐴 ∈ GCH ∧ 1o ∈ ω) → 𝐴 ≼ (𝐴 ⊔ 1o))
42, 3sylan2 596 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 ⊔ 1o))
5 simpr 488 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
6 nnfi 8778 . . . . . . . . 9 (1o ∈ ω → 1o ∈ Fin)
71, 6mp1i 13 . . . . . . . 8 𝐴 ∈ Fin → 1o ∈ Fin)
8 fidomtri2 9508 . . . . . . . 8 ((𝐴 ∈ GCH ∧ 1o ∈ Fin) → (𝐴 ≼ 1o ↔ ¬ 1o𝐴))
97, 8sylan2 596 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1o ↔ ¬ 1o𝐴))
101, 6mp1i 13 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o ∈ Fin)
11 domfi 8829 . . . . . . . . 9 ((1o ∈ Fin ∧ 𝐴 ≼ 1o) → 𝐴 ∈ Fin)
1211ex 416 . . . . . . . 8 (1o ∈ Fin → (𝐴 ≼ 1o𝐴 ∈ Fin))
1310, 12syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1o𝐴 ∈ Fin))
149, 13sylbird 263 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (¬ 1o𝐴𝐴 ∈ Fin))
155, 14mt3d 150 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o𝐴)
16 canthp1 10166 . . . . 5 (1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
1715, 16syl 17 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
184, 17jca 515 . . 3 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴))
19 gchen1 10137 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴 ⊔ 1o))
2018, 19mpdan 687 . 2 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 ⊔ 1o))
2120ensymd 8618 1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2114  𝒫 cpw 4498   class class class wbr 5040  ωcom 7611  1oc1o 8136  cen 8564  cdom 8565  csdm 8566  Fincfn 8567  cdju 9412  GCHcgch 10132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-inf2 9189
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-2o 8144  df-er 8332  df-map 8451  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-oi 9059  df-dju 9415  df-card 9453  df-gch 10133
This theorem is referenced by:  gchinf  10169  gchdjuidm  10180  gchpwdom  10182
  Copyright terms: Public domain W3C validator