![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gchdju1 | Structured version Visualization version GIF version |
Description: An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
gchdju1 | ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8667 | . . . . . 6 ⊢ 1o ∈ ω | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → 1o ∈ ω) |
3 | djudoml 10215 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ 1o ∈ ω) → 𝐴 ≼ (𝐴 ⊔ 1o)) | |
4 | 2, 3 | sylan2 591 | . . . 4 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 ⊔ 1o)) |
5 | simpr 483 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin) | |
6 | nnfi 9198 | . . . . . . . . 9 ⊢ (1o ∈ ω → 1o ∈ Fin) | |
7 | 1, 6 | mp1i 13 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ Fin → 1o ∈ Fin) |
8 | fidomtri2 10025 | . . . . . . . 8 ⊢ ((𝐴 ∈ GCH ∧ 1o ∈ Fin) → (𝐴 ≼ 1o ↔ ¬ 1o ≺ 𝐴)) | |
9 | 7, 8 | sylan2 591 | . . . . . . 7 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1o ↔ ¬ 1o ≺ 𝐴)) |
10 | 1, 6 | mp1i 13 | . . . . . . . 8 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o ∈ Fin) |
11 | domfi 9223 | . . . . . . . . 9 ⊢ ((1o ∈ Fin ∧ 𝐴 ≼ 1o) → 𝐴 ∈ Fin) | |
12 | 11 | ex 411 | . . . . . . . 8 ⊢ (1o ∈ Fin → (𝐴 ≼ 1o → 𝐴 ∈ Fin)) |
13 | 10, 12 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1o → 𝐴 ∈ Fin)) |
14 | 9, 13 | sylbird 259 | . . . . . 6 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (¬ 1o ≺ 𝐴 → 𝐴 ∈ Fin)) |
15 | 5, 14 | mt3d 148 | . . . . 5 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o ≺ 𝐴) |
16 | canthp1 10685 | . . . . 5 ⊢ (1o ≺ 𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴) |
18 | 4, 17 | jca 510 | . . 3 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) |
19 | gchen1 10656 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴 ⊔ 1o)) | |
20 | 18, 19 | mpdan 685 | . 2 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 ⊔ 1o)) |
21 | 20 | ensymd 9032 | 1 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 𝒫 cpw 4606 class class class wbr 5152 ωcom 7876 1oc1o 8486 ≈ cen 8967 ≼ cdom 8968 ≺ csdm 8969 Fincfn 8970 ⊔ cdju 9929 GCHcgch 10651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-oi 9541 df-dju 9932 df-card 9970 df-gch 10652 |
This theorem is referenced by: gchinf 10688 gchdjuidm 10699 gchpwdom 10701 |
Copyright terms: Public domain | W3C validator |