MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdju1 Structured version   Visualization version   GIF version

Theorem gchdju1 10412
Description: An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
gchdju1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴)

Proof of Theorem gchdju1
StepHypRef Expression
1 1onn 8470 . . . . . 6 1o ∈ ω
21a1i 11 . . . . 5 𝐴 ∈ Fin → 1o ∈ ω)
3 djudoml 9940 . . . . 5 ((𝐴 ∈ GCH ∧ 1o ∈ ω) → 𝐴 ≼ (𝐴 ⊔ 1o))
42, 3sylan2 593 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 ⊔ 1o))
5 simpr 485 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
6 nnfi 8950 . . . . . . . . 9 (1o ∈ ω → 1o ∈ Fin)
71, 6mp1i 13 . . . . . . . 8 𝐴 ∈ Fin → 1o ∈ Fin)
8 fidomtri2 9752 . . . . . . . 8 ((𝐴 ∈ GCH ∧ 1o ∈ Fin) → (𝐴 ≼ 1o ↔ ¬ 1o𝐴))
97, 8sylan2 593 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1o ↔ ¬ 1o𝐴))
101, 6mp1i 13 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o ∈ Fin)
11 domfi 8975 . . . . . . . . 9 ((1o ∈ Fin ∧ 𝐴 ≼ 1o) → 𝐴 ∈ Fin)
1211ex 413 . . . . . . . 8 (1o ∈ Fin → (𝐴 ≼ 1o𝐴 ∈ Fin))
1310, 12syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1o𝐴 ∈ Fin))
149, 13sylbird 259 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (¬ 1o𝐴𝐴 ∈ Fin))
155, 14mt3d 148 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o𝐴)
16 canthp1 10410 . . . . 5 (1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
1715, 16syl 17 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
184, 17jca 512 . . 3 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴))
19 gchen1 10381 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴 ⊔ 1o))
2018, 19mpdan 684 . 2 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 ⊔ 1o))
2120ensymd 8791 1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2106  𝒫 cpw 4533   class class class wbr 5074  ωcom 7712  1oc1o 8290  cen 8730  cdom 8731  csdm 8732  Fincfn 8733  cdju 9656  GCHcgch 10376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-dju 9659  df-card 9697  df-gch 10377
This theorem is referenced by:  gchinf  10413  gchdjuidm  10424  gchpwdom  10426
  Copyright terms: Public domain W3C validator