MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchxpidm Structured version   Visualization version   GIF version

Theorem gchxpidm 10093
Description: An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchxpidm ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)

Proof of Theorem gchxpidm
StepHypRef Expression
1 0ex 5213 . . . . . . . 8 ∅ ∈ V
21a1i 11 . . . . . . 7 𝐴 ∈ Fin → ∅ ∈ V)
3 xpsneng 8604 . . . . . . 7 ((𝐴 ∈ GCH ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
42, 3sylan2 594 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × {∅}) ≈ 𝐴)
54ensymd 8562 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 × {∅}))
6 df1o2 8118 . . . . . . 7 1o = {∅}
7 id 22 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
8 0fin 8748 . . . . . . . . . . . 12 ∅ ∈ Fin
97, 8eqeltrdi 2923 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 ∈ Fin)
109necon3bi 3044 . . . . . . . . . 10 𝐴 ∈ Fin → 𝐴 ≠ ∅)
1110adantl 484 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
12 0sdomg 8648 . . . . . . . . . 10 (𝐴 ∈ GCH → (∅ ≺ 𝐴𝐴 ≠ ∅))
1312adantr 483 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (∅ ≺ 𝐴𝐴 ≠ ∅))
1411, 13mpbird 259 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ∅ ≺ 𝐴)
15 0sdom1dom 8718 . . . . . . . 8 (∅ ≺ 𝐴 ↔ 1o𝐴)
1614, 15sylib 220 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o𝐴)
176, 16eqbrtrrid 5104 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → {∅} ≼ 𝐴)
18 xpdom2g 8615 . . . . . 6 ((𝐴 ∈ GCH ∧ {∅} ≼ 𝐴) → (𝐴 × {∅}) ≼ (𝐴 × 𝐴))
1917, 18syldan 593 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × {∅}) ≼ (𝐴 × 𝐴))
20 endomtr 8569 . . . . 5 ((𝐴 ≈ (𝐴 × {∅}) ∧ (𝐴 × {∅}) ≼ (𝐴 × 𝐴)) → 𝐴 ≼ (𝐴 × 𝐴))
215, 19, 20syl2anc 586 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 × 𝐴))
22 canth2g 8673 . . . . . . . . . 10 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
2322adantr 483 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≺ 𝒫 𝐴)
24 sdomdom 8539 . . . . . . . . 9 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
2523, 24syl 17 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ 𝒫 𝐴)
26 xpdom1g 8616 . . . . . . . 8 ((𝐴 ∈ GCH ∧ 𝐴 ≼ 𝒫 𝐴) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴))
2725, 26syldan 593 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴))
28 pwexg 5281 . . . . . . . . 9 (𝐴 ∈ GCH → 𝒫 𝐴 ∈ V)
2928adantr 483 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝐴 ∈ V)
30 xpdom2g 8615 . . . . . . . 8 ((𝒫 𝐴 ∈ V ∧ 𝐴 ≼ 𝒫 𝐴) → (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
3129, 25, 30syl2anc 586 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
32 domtr 8564 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴) ∧ (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴)) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
3327, 31, 32syl2anc 586 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
34 simpl 485 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
35 pwdjuen 9609 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ 𝐴 ∈ GCH) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
3634, 35syldan 593 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
3736ensymd 8562 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 (𝐴𝐴))
38 gchdjuidm 10092 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
39 pwen 8692 . . . . . . . 8 ((𝐴𝐴) ≈ 𝐴 → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
4038, 39syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
41 entr 8563 . . . . . . 7 (((𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 (𝐴𝐴) ∧ 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴)
4237, 40, 41syl2anc 586 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴)
43 domentr 8570 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴) ∧ (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴 × 𝐴) ≼ 𝒫 𝐴)
4433, 42, 43syl2anc 586 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ 𝒫 𝐴)
45 gchinf 10081 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴)
46 pwxpndom 10090 . . . . . . 7 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))
4745, 46syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))
48 ensym 8560 . . . . . . 7 ((𝐴 × 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴 × 𝐴))
49 endom 8538 . . . . . . 7 (𝒫 𝐴 ≈ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 × 𝐴))
5048, 49syl 17 . . . . . 6 ((𝐴 × 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≼ (𝐴 × 𝐴))
5147, 50nsyl 142 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴 × 𝐴) ≈ 𝒫 𝐴)
52 brsdom 8534 . . . . 5 ((𝐴 × 𝐴) ≺ 𝒫 𝐴 ↔ ((𝐴 × 𝐴) ≼ 𝒫 𝐴 ∧ ¬ (𝐴 × 𝐴) ≈ 𝒫 𝐴))
5344, 51, 52sylanbrc 585 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≺ 𝒫 𝐴)
5421, 53jca 514 . . 3 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≺ 𝒫 𝐴))
55 gchen1 10049 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴 × 𝐴))
5654, 55mpdan 685 . 2 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 × 𝐴))
5756ensymd 8562 1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  c0 4293  𝒫 cpw 4541  {csn 4569   class class class wbr 5068   × cxp 5555  ωcom 7582  1oc1o 8097  cen 8508  cdom 8509  csdm 8510  Fincfn 8511  cdju 9329  GCHcgch 10044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-seqom 8086  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-oexp 8110  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-har 9024  df-cnf 9127  df-dju 9332  df-card 9370  df-fin4 9711  df-gch 10045
This theorem is referenced by:  gchhar  10103
  Copyright terms: Public domain W3C validator