Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchxpidm Structured version   Visualization version   GIF version

Theorem gchxpidm 10083
 Description: An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchxpidm ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)

Proof of Theorem gchxpidm
StepHypRef Expression
1 0ex 5176 . . . . . . . 8 ∅ ∈ V
21a1i 11 . . . . . . 7 𝐴 ∈ Fin → ∅ ∈ V)
3 xpsneng 8588 . . . . . . 7 ((𝐴 ∈ GCH ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
42, 3sylan2 595 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × {∅}) ≈ 𝐴)
54ensymd 8546 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 × {∅}))
6 df1o2 8102 . . . . . . 7 1o = {∅}
7 id 22 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
8 0fin 8733 . . . . . . . . . . . 12 ∅ ∈ Fin
97, 8eqeltrdi 2898 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 ∈ Fin)
109necon3bi 3013 . . . . . . . . . 10 𝐴 ∈ Fin → 𝐴 ≠ ∅)
1110adantl 485 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
12 0sdomg 8633 . . . . . . . . . 10 (𝐴 ∈ GCH → (∅ ≺ 𝐴𝐴 ≠ ∅))
1312adantr 484 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (∅ ≺ 𝐴𝐴 ≠ ∅))
1411, 13mpbird 260 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ∅ ≺ 𝐴)
15 0sdom1dom 8703 . . . . . . . 8 (∅ ≺ 𝐴 ↔ 1o𝐴)
1614, 15sylib 221 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o𝐴)
176, 16eqbrtrrid 5067 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → {∅} ≼ 𝐴)
18 xpdom2g 8599 . . . . . 6 ((𝐴 ∈ GCH ∧ {∅} ≼ 𝐴) → (𝐴 × {∅}) ≼ (𝐴 × 𝐴))
1917, 18syldan 594 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × {∅}) ≼ (𝐴 × 𝐴))
20 endomtr 8553 . . . . 5 ((𝐴 ≈ (𝐴 × {∅}) ∧ (𝐴 × {∅}) ≼ (𝐴 × 𝐴)) → 𝐴 ≼ (𝐴 × 𝐴))
215, 19, 20syl2anc 587 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 × 𝐴))
22 canth2g 8658 . . . . . . . . . 10 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
2322adantr 484 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≺ 𝒫 𝐴)
24 sdomdom 8523 . . . . . . . . 9 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
2523, 24syl 17 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ 𝒫 𝐴)
26 xpdom1g 8600 . . . . . . . 8 ((𝐴 ∈ GCH ∧ 𝐴 ≼ 𝒫 𝐴) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴))
2725, 26syldan 594 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴))
28 pwexg 5245 . . . . . . . . 9 (𝐴 ∈ GCH → 𝒫 𝐴 ∈ V)
2928adantr 484 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝐴 ∈ V)
30 xpdom2g 8599 . . . . . . . 8 ((𝒫 𝐴 ∈ V ∧ 𝐴 ≼ 𝒫 𝐴) → (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
3129, 25, 30syl2anc 587 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
32 domtr 8548 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴) ∧ (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴)) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
3327, 31, 32syl2anc 587 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
34 simpl 486 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
35 pwdjuen 9595 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ 𝐴 ∈ GCH) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
3634, 35syldan 594 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
3736ensymd 8546 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 (𝐴𝐴))
38 gchdjuidm 10082 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
39 pwen 8677 . . . . . . . 8 ((𝐴𝐴) ≈ 𝐴 → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
4038, 39syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
41 entr 8547 . . . . . . 7 (((𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 (𝐴𝐴) ∧ 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴)
4237, 40, 41syl2anc 587 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴)
43 domentr 8554 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴) ∧ (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴 × 𝐴) ≼ 𝒫 𝐴)
4433, 42, 43syl2anc 587 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ 𝒫 𝐴)
45 gchinf 10071 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴)
46 pwxpndom 10080 . . . . . . 7 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))
4745, 46syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))
48 ensym 8544 . . . . . . 7 ((𝐴 × 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴 × 𝐴))
49 endom 8522 . . . . . . 7 (𝒫 𝐴 ≈ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 × 𝐴))
5048, 49syl 17 . . . . . 6 ((𝐴 × 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≼ (𝐴 × 𝐴))
5147, 50nsyl 142 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴 × 𝐴) ≈ 𝒫 𝐴)
52 brsdom 8518 . . . . 5 ((𝐴 × 𝐴) ≺ 𝒫 𝐴 ↔ ((𝐴 × 𝐴) ≼ 𝒫 𝐴 ∧ ¬ (𝐴 × 𝐴) ≈ 𝒫 𝐴))
5344, 51, 52sylanbrc 586 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≺ 𝒫 𝐴)
5421, 53jca 515 . . 3 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≺ 𝒫 𝐴))
55 gchen1 10039 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴 × 𝐴))
5654, 55mpdan 686 . 2 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 × 𝐴))
5756ensymd 8546 1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  Vcvv 3441  ∅c0 4243  𝒫 cpw 4497  {csn 4525   class class class wbr 5031   × cxp 5518  ωcom 7563  1oc1o 8081   ≈ cen 8492   ≼ cdom 8493   ≺ csdm 8494  Fincfn 8495   ⊔ cdju 9314  GCHcgch 10034 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-seqom 8070  df-1o 8088  df-2o 8089  df-oadd 8092  df-omul 8093  df-oexp 8094  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-oi 8961  df-har 9008  df-cnf 9112  df-dju 9317  df-card 9355  df-fin4 9701  df-gch 10035 This theorem is referenced by:  gchhar  10093
 Copyright terms: Public domain W3C validator