MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchxpidm Structured version   Visualization version   GIF version

Theorem gchxpidm 10526
Description: An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchxpidm ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)

Proof of Theorem gchxpidm
StepHypRef Expression
1 0ex 5251 . . . . . . . 8 ∅ ∈ V
21a1i 11 . . . . . . 7 𝐴 ∈ Fin → ∅ ∈ V)
3 xpsneng 8921 . . . . . . 7 ((𝐴 ∈ GCH ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
42, 3sylan2 593 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × {∅}) ≈ 𝐴)
54ensymd 8866 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 × {∅}))
6 df1o2 8374 . . . . . . 7 1o = {∅}
7 id 22 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
8 0fin 9036 . . . . . . . . . . . 12 ∅ ∈ Fin
97, 8eqeltrdi 2845 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 ∈ Fin)
109necon3bi 2967 . . . . . . . . . 10 𝐴 ∈ Fin → 𝐴 ≠ ∅)
1110adantl 482 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
12 0sdomg 8969 . . . . . . . . . 10 (𝐴 ∈ GCH → (∅ ≺ 𝐴𝐴 ≠ ∅))
1312adantr 481 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (∅ ≺ 𝐴𝐴 ≠ ∅))
1411, 13mpbird 256 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ∅ ≺ 𝐴)
15 0sdom1dom 9103 . . . . . . . 8 (∅ ≺ 𝐴 ↔ 1o𝐴)
1614, 15sylib 217 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o𝐴)
176, 16eqbrtrrid 5128 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → {∅} ≼ 𝐴)
18 xpdom2g 8933 . . . . . 6 ((𝐴 ∈ GCH ∧ {∅} ≼ 𝐴) → (𝐴 × {∅}) ≼ (𝐴 × 𝐴))
1917, 18syldan 591 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × {∅}) ≼ (𝐴 × 𝐴))
20 endomtr 8873 . . . . 5 ((𝐴 ≈ (𝐴 × {∅}) ∧ (𝐴 × {∅}) ≼ (𝐴 × 𝐴)) → 𝐴 ≼ (𝐴 × 𝐴))
215, 19, 20syl2anc 584 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 × 𝐴))
22 canth2g 8996 . . . . . . . . . 10 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
2322adantr 481 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≺ 𝒫 𝐴)
24 sdomdom 8841 . . . . . . . . 9 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
2523, 24syl 17 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ 𝒫 𝐴)
26 xpdom1g 8934 . . . . . . . 8 ((𝐴 ∈ GCH ∧ 𝐴 ≼ 𝒫 𝐴) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴))
2725, 26syldan 591 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴))
28 pwexg 5321 . . . . . . . . 9 (𝐴 ∈ GCH → 𝒫 𝐴 ∈ V)
2928adantr 481 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝐴 ∈ V)
30 xpdom2g 8933 . . . . . . . 8 ((𝒫 𝐴 ∈ V ∧ 𝐴 ≼ 𝒫 𝐴) → (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
3129, 25, 30syl2anc 584 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
32 domtr 8868 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴) ∧ (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴)) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
3327, 31, 32syl2anc 584 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
34 simpl 483 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
35 pwdjuen 10038 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ 𝐴 ∈ GCH) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
3634, 35syldan 591 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
3736ensymd 8866 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 (𝐴𝐴))
38 gchdjuidm 10525 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
39 pwen 9015 . . . . . . . 8 ((𝐴𝐴) ≈ 𝐴 → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
4038, 39syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
41 entr 8867 . . . . . . 7 (((𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 (𝐴𝐴) ∧ 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴)
4237, 40, 41syl2anc 584 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴)
43 domentr 8874 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴) ∧ (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴 × 𝐴) ≼ 𝒫 𝐴)
4433, 42, 43syl2anc 584 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ 𝒫 𝐴)
45 gchinf 10514 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴)
46 pwxpndom 10523 . . . . . . 7 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))
4745, 46syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))
48 ensym 8864 . . . . . . 7 ((𝐴 × 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴 × 𝐴))
49 endom 8840 . . . . . . 7 (𝒫 𝐴 ≈ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 × 𝐴))
5048, 49syl 17 . . . . . 6 ((𝐴 × 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≼ (𝐴 × 𝐴))
5147, 50nsyl 140 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴 × 𝐴) ≈ 𝒫 𝐴)
52 brsdom 8836 . . . . 5 ((𝐴 × 𝐴) ≺ 𝒫 𝐴 ↔ ((𝐴 × 𝐴) ≼ 𝒫 𝐴 ∧ ¬ (𝐴 × 𝐴) ≈ 𝒫 𝐴))
5344, 51, 52sylanbrc 583 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≺ 𝒫 𝐴)
5421, 53jca 512 . . 3 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≺ 𝒫 𝐴))
55 gchen1 10482 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴 × 𝐴))
5654, 55mpdan 684 . 2 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 × 𝐴))
5756ensymd 8866 1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940  Vcvv 3441  c0 4269  𝒫 cpw 4547  {csn 4573   class class class wbr 5092   × cxp 5618  ωcom 7780  1oc1o 8360  cen 8801  cdom 8802  csdm 8803  Fincfn 8804  cdju 9755  GCHcgch 10477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-seqom 8349  df-1o 8367  df-2o 8368  df-oadd 8371  df-omul 8372  df-oexp 8373  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-oi 9367  df-har 9414  df-cnf 9519  df-dju 9758  df-card 9796  df-fin4 10144  df-gch 10478
This theorem is referenced by:  gchhar  10536
  Copyright terms: Public domain W3C validator