MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchxpidm Structured version   Visualization version   GIF version

Theorem gchxpidm 9942
Description: An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchxpidm ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)

Proof of Theorem gchxpidm
StepHypRef Expression
1 0ex 5107 . . . . . . . 8 ∅ ∈ V
21a1i 11 . . . . . . 7 𝐴 ∈ Fin → ∅ ∈ V)
3 xpsneng 8454 . . . . . . 7 ((𝐴 ∈ GCH ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
42, 3sylan2 592 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × {∅}) ≈ 𝐴)
54ensymd 8413 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 × {∅}))
6 df1o2 7972 . . . . . . 7 1o = {∅}
7 id 22 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
8 0fin 8597 . . . . . . . . . . . 12 ∅ ∈ Fin
97, 8syl6eqel 2891 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 ∈ Fin)
109necon3bi 3010 . . . . . . . . . 10 𝐴 ∈ Fin → 𝐴 ≠ ∅)
1110adantl 482 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
12 0sdomg 8498 . . . . . . . . . 10 (𝐴 ∈ GCH → (∅ ≺ 𝐴𝐴 ≠ ∅))
1312adantr 481 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (∅ ≺ 𝐴𝐴 ≠ ∅))
1411, 13mpbird 258 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ∅ ≺ 𝐴)
15 0sdom1dom 8567 . . . . . . . 8 (∅ ≺ 𝐴 ↔ 1o𝐴)
1614, 15sylib 219 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1o𝐴)
176, 16eqbrtrrid 5002 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → {∅} ≼ 𝐴)
18 xpdom2g 8465 . . . . . 6 ((𝐴 ∈ GCH ∧ {∅} ≼ 𝐴) → (𝐴 × {∅}) ≼ (𝐴 × 𝐴))
1917, 18syldan 591 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × {∅}) ≼ (𝐴 × 𝐴))
20 endomtr 8420 . . . . 5 ((𝐴 ≈ (𝐴 × {∅}) ∧ (𝐴 × {∅}) ≼ (𝐴 × 𝐴)) → 𝐴 ≼ (𝐴 × 𝐴))
215, 19, 20syl2anc 584 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 × 𝐴))
22 canth2g 8523 . . . . . . . . . 10 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
2322adantr 481 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≺ 𝒫 𝐴)
24 sdomdom 8390 . . . . . . . . 9 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
2523, 24syl 17 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ 𝒫 𝐴)
26 xpdom1g 8466 . . . . . . . 8 ((𝐴 ∈ GCH ∧ 𝐴 ≼ 𝒫 𝐴) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴))
2725, 26syldan 591 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴))
28 pwexg 5175 . . . . . . . . 9 (𝐴 ∈ GCH → 𝒫 𝐴 ∈ V)
2928adantr 481 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝐴 ∈ V)
30 xpdom2g 8465 . . . . . . . 8 ((𝒫 𝐴 ∈ V ∧ 𝐴 ≼ 𝒫 𝐴) → (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
3129, 25, 30syl2anc 584 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
32 domtr 8415 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝐴) ∧ (𝒫 𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴)) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
3327, 31, 32syl2anc 584 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴))
34 simpl 483 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
35 pwdjuen 9458 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ 𝐴 ∈ GCH) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
3634, 35syldan 591 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
3736ensymd 8413 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 (𝐴𝐴))
38 gchdjuidm 9941 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
39 pwen 8542 . . . . . . . 8 ((𝐴𝐴) ≈ 𝐴 → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
4038, 39syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴)
41 entr 8414 . . . . . . 7 (((𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 (𝐴𝐴) ∧ 𝒫 (𝐴𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴)
4237, 40, 41syl2anc 584 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴)
43 domentr 8421 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝒫 𝐴 × 𝒫 𝐴) ∧ (𝒫 𝐴 × 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴 × 𝐴) ≼ 𝒫 𝐴)
4433, 42, 43syl2anc 584 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≼ 𝒫 𝐴)
45 gchinf 9930 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴)
46 pwxpndom 9939 . . . . . . 7 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))
4745, 46syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))
48 ensym 8411 . . . . . . 7 ((𝐴 × 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴 × 𝐴))
49 endom 8389 . . . . . . 7 (𝒫 𝐴 ≈ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 × 𝐴))
5048, 49syl 17 . . . . . 6 ((𝐴 × 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≼ (𝐴 × 𝐴))
5147, 50nsyl 142 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴 × 𝐴) ≈ 𝒫 𝐴)
52 brsdom 8385 . . . . 5 ((𝐴 × 𝐴) ≺ 𝒫 𝐴 ↔ ((𝐴 × 𝐴) ≼ 𝒫 𝐴 ∧ ¬ (𝐴 × 𝐴) ≈ 𝒫 𝐴))
5344, 51, 52sylanbrc 583 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≺ 𝒫 𝐴)
5421, 53jca 512 . . 3 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≺ 𝒫 𝐴))
55 gchen1 9898 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴 × 𝐴))
5654, 55mpdan 683 . 2 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 × 𝐴))
5756ensymd 8413 1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wne 2984  Vcvv 3437  c0 4215  𝒫 cpw 4457  {csn 4476   class class class wbr 4966   × cxp 5446  ωcom 7441  1oc1o 7951  cen 8359  cdom 8360  csdm 8361  Fincfn 8362  cdju 9178  GCHcgch 9893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-inf2 8955
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-se 5408  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-isom 6239  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-supp 7687  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-seqom 7940  df-1o 7958  df-2o 7959  df-oadd 7962  df-omul 7963  df-oexp 7964  df-er 8144  df-map 8263  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-fsupp 8685  df-oi 8825  df-har 8873  df-cnf 8976  df-dju 9181  df-card 9219  df-fin4 9560  df-gch 9894
This theorem is referenced by:  gchhar  9952
  Copyright terms: Public domain W3C validator