MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdjuidm Structured version   Visualization version   GIF version

Theorem gchdjuidm 10621
Description: An infinite GCH-set is idempotent under cardinal sum. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchdjuidm ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)

Proof of Theorem gchdjuidm
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
2 djudoml 10138 . . . . 5 ((𝐴 ∈ GCH ∧ 𝐴 ∈ GCH) → 𝐴 ≼ (𝐴𝐴))
31, 1, 2syl2anc 584 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴𝐴))
4 canth2g 9095 . . . . . . . . 9 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
54adantr 480 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≺ 𝒫 𝐴)
6 sdomdom 8951 . . . . . . . 8 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
75, 6syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ 𝒫 𝐴)
8 reldom 8924 . . . . . . . . . 10 Rel ≼
98brrelex1i 5694 . . . . . . . . 9 (𝐴 ≼ 𝒫 𝐴𝐴 ∈ V)
10 djudom1 10136 . . . . . . . . 9 ((𝐴 ≼ 𝒫 𝐴𝐴 ∈ V) → (𝐴𝐴) ≼ (𝒫 𝐴𝐴))
119, 10mpdan 687 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐴 → (𝐴𝐴) ≼ (𝒫 𝐴𝐴))
129pwexd 5334 . . . . . . . . 9 (𝐴 ≼ 𝒫 𝐴 → 𝒫 𝐴 ∈ V)
13 djudom2 10137 . . . . . . . . 9 ((𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1412, 13mpdan 687 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐴 → (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
15 domtr 8978 . . . . . . . 8 (((𝐴𝐴) ≼ (𝒫 𝐴𝐴) ∧ (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴)) → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1611, 14, 15syl2anc 584 . . . . . . 7 (𝐴 ≼ 𝒫 𝐴 → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
177, 16syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
18 pwdju1 10144 . . . . . . . 8 (𝐴 ∈ GCH → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
1918adantr 480 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
20 gchdju1 10609 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴)
21 pwen 9114 . . . . . . . 8 ((𝐴 ⊔ 1o) ≈ 𝐴 → 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
2220, 21syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
23 entr 8977 . . . . . . 7 (((𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o) ∧ 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
2419, 22, 23syl2anc 584 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
25 domentr 8984 . . . . . 6 (((𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴𝐴) ≼ 𝒫 𝐴)
2617, 24, 25syl2anc 584 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≼ 𝒫 𝐴)
27 gchinf 10610 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴)
28 pwdjundom 10620 . . . . . . 7 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))
2927, 28syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))
30 ensym 8974 . . . . . . 7 ((𝐴𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴𝐴))
31 endom 8950 . . . . . . 7 (𝒫 𝐴 ≈ (𝐴𝐴) → 𝒫 𝐴 ≼ (𝐴𝐴))
3230, 31syl 17 . . . . . 6 ((𝐴𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≼ (𝐴𝐴))
3329, 32nsyl 140 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴𝐴) ≈ 𝒫 𝐴)
34 brsdom 8946 . . . . 5 ((𝐴𝐴) ≺ 𝒫 𝐴 ↔ ((𝐴𝐴) ≼ 𝒫 𝐴 ∧ ¬ (𝐴𝐴) ≈ 𝒫 𝐴))
3526, 33, 34sylanbrc 583 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≺ 𝒫 𝐴)
363, 35jca 511 . . 3 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≺ 𝒫 𝐴))
37 gchen1 10578 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴𝐴))
3836, 37mpdan 687 . 2 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴𝐴))
3938ensymd 8976 1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  Vcvv 3447  𝒫 cpw 4563   class class class wbr 5107  ωcom 7842  1oc1o 8427  cen 8915  cdom 8916  csdm 8917  Fincfn 8918  cdju 9851  GCHcgch 10573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-har 9510  df-cnf 9615  df-dju 9854  df-card 9892  df-fin4 10240  df-gch 10574
This theorem is referenced by:  gchxpidm  10622  gchpwdom  10623  gchhar  10632
  Copyright terms: Public domain W3C validator