MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdjuidm Structured version   Visualization version   GIF version

Theorem gchdjuidm 10597
Description: An infinite GCH-set is idempotent under cardinal sum. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchdjuidm ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)

Proof of Theorem gchdjuidm
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
2 djudoml 10114 . . . . 5 ((𝐴 ∈ GCH ∧ 𝐴 ∈ GCH) → 𝐴 ≼ (𝐴𝐴))
31, 1, 2syl2anc 584 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴𝐴))
4 canth2g 9072 . . . . . . . . 9 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
54adantr 480 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≺ 𝒫 𝐴)
6 sdomdom 8928 . . . . . . . 8 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
75, 6syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ 𝒫 𝐴)
8 reldom 8901 . . . . . . . . . 10 Rel ≼
98brrelex1i 5687 . . . . . . . . 9 (𝐴 ≼ 𝒫 𝐴𝐴 ∈ V)
10 djudom1 10112 . . . . . . . . 9 ((𝐴 ≼ 𝒫 𝐴𝐴 ∈ V) → (𝐴𝐴) ≼ (𝒫 𝐴𝐴))
119, 10mpdan 687 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐴 → (𝐴𝐴) ≼ (𝒫 𝐴𝐴))
129pwexd 5329 . . . . . . . . 9 (𝐴 ≼ 𝒫 𝐴 → 𝒫 𝐴 ∈ V)
13 djudom2 10113 . . . . . . . . 9 ((𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1412, 13mpdan 687 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐴 → (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
15 domtr 8955 . . . . . . . 8 (((𝐴𝐴) ≼ (𝒫 𝐴𝐴) ∧ (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴)) → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1611, 14, 15syl2anc 584 . . . . . . 7 (𝐴 ≼ 𝒫 𝐴 → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
177, 16syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
18 pwdju1 10120 . . . . . . . 8 (𝐴 ∈ GCH → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
1918adantr 480 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
20 gchdju1 10585 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴)
21 pwen 9091 . . . . . . . 8 ((𝐴 ⊔ 1o) ≈ 𝐴 → 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
2220, 21syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
23 entr 8954 . . . . . . 7 (((𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o) ∧ 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
2419, 22, 23syl2anc 584 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
25 domentr 8961 . . . . . 6 (((𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴𝐴) ≼ 𝒫 𝐴)
2617, 24, 25syl2anc 584 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≼ 𝒫 𝐴)
27 gchinf 10586 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴)
28 pwdjundom 10596 . . . . . . 7 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))
2927, 28syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))
30 ensym 8951 . . . . . . 7 ((𝐴𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴𝐴))
31 endom 8927 . . . . . . 7 (𝒫 𝐴 ≈ (𝐴𝐴) → 𝒫 𝐴 ≼ (𝐴𝐴))
3230, 31syl 17 . . . . . 6 ((𝐴𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≼ (𝐴𝐴))
3329, 32nsyl 140 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴𝐴) ≈ 𝒫 𝐴)
34 brsdom 8923 . . . . 5 ((𝐴𝐴) ≺ 𝒫 𝐴 ↔ ((𝐴𝐴) ≼ 𝒫 𝐴 ∧ ¬ (𝐴𝐴) ≈ 𝒫 𝐴))
3526, 33, 34sylanbrc 583 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≺ 𝒫 𝐴)
363, 35jca 511 . . 3 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≺ 𝒫 𝐴))
37 gchen1 10554 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴𝐴))
3836, 37mpdan 687 . 2 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴𝐴))
3938ensymd 8953 1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  Vcvv 3444  𝒫 cpw 4559   class class class wbr 5102  ωcom 7822  1oc1o 8404  cen 8892  cdom 8893  csdm 8894  Fincfn 8895  cdju 9827  GCHcgch 10549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seqom 8393  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-oexp 8417  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-har 9486  df-cnf 9591  df-dju 9830  df-card 9868  df-fin4 10216  df-gch 10550
This theorem is referenced by:  gchxpidm  10598  gchpwdom  10599  gchhar  10608
  Copyright terms: Public domain W3C validator