MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdjuidm Structured version   Visualization version   GIF version

Theorem gchdjuidm 10663
Description: An infinite GCH-set is idempotent under cardinal sum. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchdjuidm ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)

Proof of Theorem gchdjuidm
StepHypRef Expression
1 simpl 484 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
2 djudoml 10179 . . . . 5 ((𝐴 ∈ GCH ∧ 𝐴 ∈ GCH) → 𝐴 ≼ (𝐴𝐴))
31, 1, 2syl2anc 585 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴𝐴))
4 canth2g 9131 . . . . . . . . 9 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
54adantr 482 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≺ 𝒫 𝐴)
6 sdomdom 8976 . . . . . . . 8 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
75, 6syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ 𝒫 𝐴)
8 reldom 8945 . . . . . . . . . 10 Rel ≼
98brrelex1i 5733 . . . . . . . . 9 (𝐴 ≼ 𝒫 𝐴𝐴 ∈ V)
10 djudom1 10177 . . . . . . . . 9 ((𝐴 ≼ 𝒫 𝐴𝐴 ∈ V) → (𝐴𝐴) ≼ (𝒫 𝐴𝐴))
119, 10mpdan 686 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐴 → (𝐴𝐴) ≼ (𝒫 𝐴𝐴))
129pwexd 5378 . . . . . . . . 9 (𝐴 ≼ 𝒫 𝐴 → 𝒫 𝐴 ∈ V)
13 djudom2 10178 . . . . . . . . 9 ((𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1412, 13mpdan 686 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐴 → (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
15 domtr 9003 . . . . . . . 8 (((𝐴𝐴) ≼ (𝒫 𝐴𝐴) ∧ (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴)) → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1611, 14, 15syl2anc 585 . . . . . . 7 (𝐴 ≼ 𝒫 𝐴 → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
177, 16syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
18 pwdju1 10185 . . . . . . . 8 (𝐴 ∈ GCH → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
1918adantr 482 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
20 gchdju1 10651 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴)
21 pwen 9150 . . . . . . . 8 ((𝐴 ⊔ 1o) ≈ 𝐴 → 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
2220, 21syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
23 entr 9002 . . . . . . 7 (((𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o) ∧ 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
2419, 22, 23syl2anc 585 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
25 domentr 9009 . . . . . 6 (((𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴𝐴) ≼ 𝒫 𝐴)
2617, 24, 25syl2anc 585 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≼ 𝒫 𝐴)
27 gchinf 10652 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴)
28 pwdjundom 10662 . . . . . . 7 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))
2927, 28syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))
30 ensym 8999 . . . . . . 7 ((𝐴𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴𝐴))
31 endom 8975 . . . . . . 7 (𝒫 𝐴 ≈ (𝐴𝐴) → 𝒫 𝐴 ≼ (𝐴𝐴))
3230, 31syl 17 . . . . . 6 ((𝐴𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≼ (𝐴𝐴))
3329, 32nsyl 140 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴𝐴) ≈ 𝒫 𝐴)
34 brsdom 8971 . . . . 5 ((𝐴𝐴) ≺ 𝒫 𝐴 ↔ ((𝐴𝐴) ≼ 𝒫 𝐴 ∧ ¬ (𝐴𝐴) ≈ 𝒫 𝐴))
3526, 33, 34sylanbrc 584 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≺ 𝒫 𝐴)
363, 35jca 513 . . 3 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≺ 𝒫 𝐴))
37 gchen1 10620 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴𝐴))
3836, 37mpdan 686 . 2 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴𝐴))
3938ensymd 9001 1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wcel 2107  Vcvv 3475  𝒫 cpw 4603   class class class wbr 5149  ωcom 7855  1oc1o 8459  cen 8936  cdom 8937  csdm 8938  Fincfn 8939  cdju 9893  GCHcgch 10615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-seqom 8448  df-1o 8466  df-2o 8467  df-oadd 8470  df-omul 8471  df-oexp 8472  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-oi 9505  df-har 9552  df-cnf 9657  df-dju 9896  df-card 9934  df-fin4 10282  df-gch 10616
This theorem is referenced by:  gchxpidm  10664  gchpwdom  10665  gchhar  10674
  Copyright terms: Public domain W3C validator