MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdjuidm Structured version   Visualization version   GIF version

Theorem gchdjuidm 10087
Description: An infinite GCH-set is idempotent under cardinal sum. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchdjuidm ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)

Proof of Theorem gchdjuidm
StepHypRef Expression
1 simpl 485 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
2 djudoml 9607 . . . . 5 ((𝐴 ∈ GCH ∧ 𝐴 ∈ GCH) → 𝐴 ≼ (𝐴𝐴))
31, 1, 2syl2anc 586 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴𝐴))
4 canth2g 8668 . . . . . . . . 9 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
54adantr 483 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≺ 𝒫 𝐴)
6 sdomdom 8534 . . . . . . . 8 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
75, 6syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ 𝒫 𝐴)
8 reldom 8512 . . . . . . . . . 10 Rel ≼
98brrelex1i 5605 . . . . . . . . 9 (𝐴 ≼ 𝒫 𝐴𝐴 ∈ V)
10 djudom1 9605 . . . . . . . . 9 ((𝐴 ≼ 𝒫 𝐴𝐴 ∈ V) → (𝐴𝐴) ≼ (𝒫 𝐴𝐴))
119, 10mpdan 685 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐴 → (𝐴𝐴) ≼ (𝒫 𝐴𝐴))
129pwexd 5277 . . . . . . . . 9 (𝐴 ≼ 𝒫 𝐴 → 𝒫 𝐴 ∈ V)
13 djudom2 9606 . . . . . . . . 9 ((𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1412, 13mpdan 685 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐴 → (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
15 domtr 8559 . . . . . . . 8 (((𝐴𝐴) ≼ (𝒫 𝐴𝐴) ∧ (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴)) → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1611, 14, 15syl2anc 586 . . . . . . 7 (𝐴 ≼ 𝒫 𝐴 → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
177, 16syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
18 pwdju1 9613 . . . . . . . 8 (𝐴 ∈ GCH → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
1918adantr 483 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
20 gchdju1 10075 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴)
21 pwen 8687 . . . . . . . 8 ((𝐴 ⊔ 1o) ≈ 𝐴 → 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
2220, 21syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
23 entr 8558 . . . . . . 7 (((𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o) ∧ 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
2419, 22, 23syl2anc 586 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
25 domentr 8565 . . . . . 6 (((𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴𝐴) ≼ 𝒫 𝐴)
2617, 24, 25syl2anc 586 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≼ 𝒫 𝐴)
27 gchinf 10076 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴)
28 pwdjundom 10086 . . . . . . 7 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))
2927, 28syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))
30 ensym 8555 . . . . . . 7 ((𝐴𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴𝐴))
31 endom 8533 . . . . . . 7 (𝒫 𝐴 ≈ (𝐴𝐴) → 𝒫 𝐴 ≼ (𝐴𝐴))
3230, 31syl 17 . . . . . 6 ((𝐴𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≼ (𝐴𝐴))
3329, 32nsyl 142 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴𝐴) ≈ 𝒫 𝐴)
34 brsdom 8529 . . . . 5 ((𝐴𝐴) ≺ 𝒫 𝐴 ↔ ((𝐴𝐴) ≼ 𝒫 𝐴 ∧ ¬ (𝐴𝐴) ≈ 𝒫 𝐴))
3526, 33, 34sylanbrc 585 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≺ 𝒫 𝐴)
363, 35jca 514 . . 3 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≺ 𝒫 𝐴))
37 gchen1 10044 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴𝐴))
3836, 37mpdan 685 . 2 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴𝐴))
3938ensymd 8557 1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wcel 2113  Vcvv 3493  𝒫 cpw 4536   class class class wbr 5063  ωcom 7577  1oc1o 8092  cen 8503  cdom 8504  csdm 8505  Fincfn 8506  cdju 9324  GCHcgch 10039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-inf2 9101
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-int 4874  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-se 5512  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-supp 7828  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-seqom 8081  df-1o 8099  df-2o 8100  df-oadd 8103  df-omul 8104  df-oexp 8105  df-er 8286  df-map 8405  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-fsupp 8831  df-oi 8971  df-har 9019  df-cnf 9122  df-dju 9327  df-card 9365  df-fin4 9706  df-gch 10040
This theorem is referenced by:  gchxpidm  10088  gchpwdom  10089  gchhar  10098
  Copyright terms: Public domain W3C validator