MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdjuidm Structured version   Visualization version   GIF version

Theorem gchdjuidm 10665
Description: An infinite GCH-set is idempotent under cardinal sum. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchdjuidm ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)

Proof of Theorem gchdjuidm
StepHypRef Expression
1 simpl 481 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
2 djudoml 10181 . . . . 5 ((𝐴 ∈ GCH ∧ 𝐴 ∈ GCH) → 𝐴 ≼ (𝐴𝐴))
31, 1, 2syl2anc 582 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴𝐴))
4 canth2g 9133 . . . . . . . . 9 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
54adantr 479 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≺ 𝒫 𝐴)
6 sdomdom 8978 . . . . . . . 8 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
75, 6syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ 𝒫 𝐴)
8 reldom 8947 . . . . . . . . . 10 Rel ≼
98brrelex1i 5731 . . . . . . . . 9 (𝐴 ≼ 𝒫 𝐴𝐴 ∈ V)
10 djudom1 10179 . . . . . . . . 9 ((𝐴 ≼ 𝒫 𝐴𝐴 ∈ V) → (𝐴𝐴) ≼ (𝒫 𝐴𝐴))
119, 10mpdan 683 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐴 → (𝐴𝐴) ≼ (𝒫 𝐴𝐴))
129pwexd 5376 . . . . . . . . 9 (𝐴 ≼ 𝒫 𝐴 → 𝒫 𝐴 ∈ V)
13 djudom2 10180 . . . . . . . . 9 ((𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1412, 13mpdan 683 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐴 → (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
15 domtr 9005 . . . . . . . 8 (((𝐴𝐴) ≼ (𝒫 𝐴𝐴) ∧ (𝒫 𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴)) → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1611, 14, 15syl2anc 582 . . . . . . 7 (𝐴 ≼ 𝒫 𝐴 → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
177, 16syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
18 pwdju1 10187 . . . . . . . 8 (𝐴 ∈ GCH → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
1918adantr 479 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
20 gchdju1 10653 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴)
21 pwen 9152 . . . . . . . 8 ((𝐴 ⊔ 1o) ≈ 𝐴 → 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
2220, 21syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
23 entr 9004 . . . . . . 7 (((𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o) ∧ 𝒫 (𝐴 ⊔ 1o) ≈ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
2419, 22, 23syl2anc 582 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴)
25 domentr 9011 . . . . . 6 (((𝐴𝐴) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴𝐴) ≼ 𝒫 𝐴)
2617, 24, 25syl2anc 582 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≼ 𝒫 𝐴)
27 gchinf 10654 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴)
28 pwdjundom 10664 . . . . . . 7 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))
2927, 28syl 17 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))
30 ensym 9001 . . . . . . 7 ((𝐴𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴𝐴))
31 endom 8977 . . . . . . 7 (𝒫 𝐴 ≈ (𝐴𝐴) → 𝒫 𝐴 ≼ (𝐴𝐴))
3230, 31syl 17 . . . . . 6 ((𝐴𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≼ (𝐴𝐴))
3329, 32nsyl 140 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴𝐴) ≈ 𝒫 𝐴)
34 brsdom 8973 . . . . 5 ((𝐴𝐴) ≺ 𝒫 𝐴 ↔ ((𝐴𝐴) ≼ 𝒫 𝐴 ∧ ¬ (𝐴𝐴) ≈ 𝒫 𝐴))
3526, 33, 34sylanbrc 581 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≺ 𝒫 𝐴)
363, 35jca 510 . . 3 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≺ 𝒫 𝐴))
37 gchen1 10622 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴𝐴))
3836, 37mpdan 683 . 2 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴𝐴))
3938ensymd 9003 1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wcel 2104  Vcvv 3472  𝒫 cpw 4601   class class class wbr 5147  ωcom 7857  1oc1o 8461  cen 8938  cdom 8939  csdm 8940  Fincfn 8941  cdju 9895  GCHcgch 10617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-seqom 8450  df-1o 8468  df-2o 8469  df-oadd 8472  df-omul 8473  df-oexp 8474  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-oi 9507  df-har 9554  df-cnf 9659  df-dju 9898  df-card 9936  df-fin4 10284  df-gch 10618
This theorem is referenced by:  gchxpidm  10666  gchpwdom  10667  gchhar  10676
  Copyright terms: Public domain W3C validator