Proof of Theorem gzrngunit
Step | Hyp | Ref
| Expression |
1 | | gzsubrg 20220 |
. . . . 5
⊢
ℤ[i] ∈ (SubRing‘ℂfld) |
2 | | gzrng.1 |
. . . . . 6
⊢ 𝑍 = (ℂfld
↾s ℤ[i]) |
3 | 2 | subrgbas 19612 |
. . . . 5
⊢
(ℤ[i] ∈ (SubRing‘ℂfld) →
ℤ[i] = (Base‘𝑍)) |
4 | 1, 3 | ax-mp 5 |
. . . 4
⊢
ℤ[i] = (Base‘𝑍) |
5 | | eqid 2758 |
. . . 4
⊢
(Unit‘𝑍) =
(Unit‘𝑍) |
6 | 4, 5 | unitcl 19480 |
. . 3
⊢ (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℤ[i]) |
7 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(invr‘ℂfld) =
(invr‘ℂfld) |
8 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(invr‘𝑍) = (invr‘𝑍) |
9 | 2, 7, 5, 8 | subrginv 19619 |
. . . . . . . . . . 11
⊢
((ℤ[i] ∈ (SubRing‘ℂfld) ∧ 𝐴 ∈ (Unit‘𝑍)) →
((invr‘ℂfld)‘𝐴) = ((invr‘𝑍)‘𝐴)) |
10 | 1, 9 | mpan 689 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (Unit‘𝑍) →
((invr‘ℂfld)‘𝐴) = ((invr‘𝑍)‘𝐴)) |
11 | | gzcn 16323 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈
ℂ) |
12 | 6, 11 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℂ) |
13 | | 0red 10682 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (Unit‘𝑍) → 0 ∈
ℝ) |
14 | | 1re 10679 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
15 | 14 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ∈
ℝ) |
16 | 12 | abscld 14844 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈
ℝ) |
17 | | 0lt1 11200 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
18 | 17 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (Unit‘𝑍) → 0 <
1) |
19 | 2 | gzrngunitlem 20231 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴)) |
20 | 13, 15, 16, 18, 19 | ltletrd 10838 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (Unit‘𝑍) → 0 < (abs‘𝐴)) |
21 | 20 | gt0ne0d 11242 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ≠ 0) |
22 | 12 | abs00ad 14698 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) |
23 | 22 | necon3bid 2995 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0)) |
24 | 21, 23 | mpbid 235 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (Unit‘𝑍) → 𝐴 ≠ 0) |
25 | | cnfldinv 20197 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((invr‘ℂfld)‘𝐴) = (1 / 𝐴)) |
26 | 12, 24, 25 | syl2anc 587 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (Unit‘𝑍) →
((invr‘ℂfld)‘𝐴) = (1 / 𝐴)) |
27 | 10, 26 | eqtr3d 2795 |
. . . . . . . . 9
⊢ (𝐴 ∈ (Unit‘𝑍) →
((invr‘𝑍)‘𝐴) = (1 / 𝐴)) |
28 | 2 | subrgring 19606 |
. . . . . . . . . . 11
⊢
(ℤ[i] ∈ (SubRing‘ℂfld) → 𝑍 ∈ Ring) |
29 | 1, 28 | ax-mp 5 |
. . . . . . . . . 10
⊢ 𝑍 ∈ Ring |
30 | 5, 8 | unitinvcl 19495 |
. . . . . . . . . 10
⊢ ((𝑍 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑍)) →
((invr‘𝑍)‘𝐴) ∈ (Unit‘𝑍)) |
31 | 29, 30 | mpan 689 |
. . . . . . . . 9
⊢ (𝐴 ∈ (Unit‘𝑍) →
((invr‘𝑍)‘𝐴) ∈ (Unit‘𝑍)) |
32 | 27, 31 | eqeltrrd 2853 |
. . . . . . . 8
⊢ (𝐴 ∈ (Unit‘𝑍) → (1 / 𝐴) ∈ (Unit‘𝑍)) |
33 | 2 | gzrngunitlem 20231 |
. . . . . . . 8
⊢ ((1 /
𝐴) ∈ (Unit‘𝑍) → 1 ≤ (abs‘(1 /
𝐴))) |
34 | 32, 33 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘(1 /
𝐴))) |
35 | | 1cnd 10674 |
. . . . . . . 8
⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ∈
ℂ) |
36 | 35, 12, 24 | absdivd 14863 |
. . . . . . 7
⊢ (𝐴 ∈ (Unit‘𝑍) → (abs‘(1 / 𝐴)) = ((abs‘1) /
(abs‘𝐴))) |
37 | 34, 36 | breqtrd 5058 |
. . . . . 6
⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ ((abs‘1) /
(abs‘𝐴))) |
38 | | 1div1e1 11368 |
. . . . . 6
⊢ (1 / 1) =
1 |
39 | | abs1 14705 |
. . . . . . . 8
⊢
(abs‘1) = 1 |
40 | 39 | eqcomi 2767 |
. . . . . . 7
⊢ 1 =
(abs‘1) |
41 | 40 | oveq1i 7160 |
. . . . . 6
⊢ (1 /
(abs‘𝐴)) =
((abs‘1) / (abs‘𝐴)) |
42 | 37, 38, 41 | 3brtr4g 5066 |
. . . . 5
⊢ (𝐴 ∈ (Unit‘𝑍) → (1 / 1) ≤ (1 /
(abs‘𝐴))) |
43 | | lerec 11561 |
. . . . . 6
⊢
((((abs‘𝐴)
∈ ℝ ∧ 0 < (abs‘𝐴)) ∧ (1 ∈ ℝ ∧ 0 < 1))
→ ((abs‘𝐴) ≤
1 ↔ (1 / 1) ≤ (1 / (abs‘𝐴)))) |
44 | 16, 20, 15, 18, 43 | syl22anc 837 |
. . . . 5
⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) ≤ 1 ↔ (1 / 1) ≤ (1
/ (abs‘𝐴)))) |
45 | 42, 44 | mpbird 260 |
. . . 4
⊢ (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ≤ 1) |
46 | | letri3 10764 |
. . . . 5
⊢
(((abs‘𝐴)
∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐴) = 1 ↔ ((abs‘𝐴) ≤ 1 ∧ 1 ≤ (abs‘𝐴)))) |
47 | 16, 14, 46 | sylancl 589 |
. . . 4
⊢ (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 1 ↔ ((abs‘𝐴) ≤ 1 ∧ 1 ≤
(abs‘𝐴)))) |
48 | 45, 19, 47 | mpbir2and 712 |
. . 3
⊢ (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) = 1) |
49 | 6, 48 | jca 515 |
. 2
⊢ (𝐴 ∈ (Unit‘𝑍) → (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1)) |
50 | 11 | adantr 484 |
. . . 4
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
𝐴 ∈
ℂ) |
51 | | simpr 488 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
(abs‘𝐴) =
1) |
52 | | ax-1ne0 10644 |
. . . . . . 7
⊢ 1 ≠
0 |
53 | 52 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) → 1
≠ 0) |
54 | 51, 53 | eqnetrd 3018 |
. . . . 5
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
(abs‘𝐴) ≠
0) |
55 | | fveq2 6658 |
. . . . . . 7
⊢ (𝐴 = 0 → (abs‘𝐴) =
(abs‘0)) |
56 | | abs0 14693 |
. . . . . . 7
⊢
(abs‘0) = 0 |
57 | 55, 56 | eqtrdi 2809 |
. . . . . 6
⊢ (𝐴 = 0 → (abs‘𝐴) = 0) |
58 | 57 | necon3i 2983 |
. . . . 5
⊢
((abs‘𝐴) ≠
0 → 𝐴 ≠
0) |
59 | 54, 58 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
𝐴 ≠ 0) |
60 | | eldifsn 4677 |
. . . 4
⊢ (𝐴 ∈ (ℂ ∖ {0})
↔ (𝐴 ∈ ℂ
∧ 𝐴 ≠
0)) |
61 | 50, 59, 60 | sylanbrc 586 |
. . 3
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
𝐴 ∈ (ℂ ∖
{0})) |
62 | | simpl 486 |
. . 3
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
𝐴 ∈
ℤ[i]) |
63 | 50, 59, 25 | syl2anc 587 |
. . . . 5
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
((invr‘ℂfld)‘𝐴) = (1 / 𝐴)) |
64 | 50 | absvalsqd 14850 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
((abs‘𝐴)↑2) =
(𝐴 ·
(∗‘𝐴))) |
65 | 51 | oveq1d 7165 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
((abs‘𝐴)↑2) =
(1↑2)) |
66 | | sq1 13608 |
. . . . . . . 8
⊢
(1↑2) = 1 |
67 | 65, 66 | eqtrdi 2809 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
((abs‘𝐴)↑2) =
1) |
68 | 64, 67 | eqtr3d 2795 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
(𝐴 ·
(∗‘𝐴)) =
1) |
69 | 68 | oveq1d 7165 |
. . . . 5
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
((𝐴 ·
(∗‘𝐴)) / 𝐴) = (1 / 𝐴)) |
70 | 50 | cjcld 14603 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
(∗‘𝐴) ∈
ℂ) |
71 | 70, 50, 59 | divcan3d 11459 |
. . . . 5
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
((𝐴 ·
(∗‘𝐴)) / 𝐴) = (∗‘𝐴)) |
72 | 63, 69, 71 | 3eqtr2d 2799 |
. . . 4
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
((invr‘ℂfld)‘𝐴) = (∗‘𝐴)) |
73 | | gzcjcl 16327 |
. . . . 5
⊢ (𝐴 ∈ ℤ[i] →
(∗‘𝐴) ∈
ℤ[i]) |
74 | 73 | adantr 484 |
. . . 4
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
(∗‘𝐴) ∈
ℤ[i]) |
75 | 72, 74 | eqeltrd 2852 |
. . 3
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
((invr‘ℂfld)‘𝐴) ∈ ℤ[i]) |
76 | | cnfldbas 20170 |
. . . . . 6
⊢ ℂ =
(Base‘ℂfld) |
77 | | cnfld0 20190 |
. . . . . 6
⊢ 0 =
(0g‘ℂfld) |
78 | | cndrng 20195 |
. . . . . 6
⊢
ℂfld ∈ DivRing |
79 | 76, 77, 78 | drngui 19576 |
. . . . 5
⊢ (ℂ
∖ {0}) = (Unit‘ℂfld) |
80 | 2, 79, 5, 7 | subrgunit 19621 |
. . . 4
⊢
(ℤ[i] ∈ (SubRing‘ℂfld) → (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ[i] ∧
((invr‘ℂfld)‘𝐴) ∈ ℤ[i]))) |
81 | 1, 80 | ax-mp 5 |
. . 3
⊢ (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ[i] ∧
((invr‘ℂfld)‘𝐴) ∈ ℤ[i])) |
82 | 61, 62, 75, 81 | syl3anbrc 1340 |
. 2
⊢ ((𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) = 1) →
𝐴 ∈ (Unit‘𝑍)) |
83 | 49, 82 | impbii 212 |
1
⊢ (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1)) |