MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gzrngunit Structured version   Visualization version   GIF version

Theorem gzrngunit 21340
Description: The units on ℤ[i] are the gaussian integers with norm 1. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
gzrng.1 𝑍 = (ℂflds ℤ[i])
Assertion
Ref Expression
gzrngunit (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))

Proof of Theorem gzrngunit
StepHypRef Expression
1 gzsubrg 21328 . . . . 5 ℤ[i] ∈ (SubRing‘ℂfld)
2 gzrng.1 . . . . . 6 𝑍 = (ℂflds ℤ[i])
32subrgbas 20466 . . . . 5 (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] = (Base‘𝑍))
41, 3ax-mp 5 . . . 4 ℤ[i] = (Base‘𝑍)
5 eqid 2729 . . . 4 (Unit‘𝑍) = (Unit‘𝑍)
64, 5unitcl 20260 . . 3 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℤ[i])
7 eqid 2729 . . . . . . . . . . . 12 (invr‘ℂfld) = (invr‘ℂfld)
8 eqid 2729 . . . . . . . . . . . 12 (invr𝑍) = (invr𝑍)
92, 7, 5, 8subrginv 20473 . . . . . . . . . . 11 ((ℤ[i] ∈ (SubRing‘ℂfld) ∧ 𝐴 ∈ (Unit‘𝑍)) → ((invr‘ℂfld)‘𝐴) = ((invr𝑍)‘𝐴))
101, 9mpan 690 . . . . . . . . . 10 (𝐴 ∈ (Unit‘𝑍) → ((invr‘ℂfld)‘𝐴) = ((invr𝑍)‘𝐴))
11 gzcn 16844 . . . . . . . . . . . 12 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
126, 11syl 17 . . . . . . . . . . 11 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℂ)
13 0red 11118 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 0 ∈ ℝ)
14 1re 11115 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 1 ∈ ℝ)
1612abscld 15346 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℝ)
17 0lt1 11642 . . . . . . . . . . . . . . 15 0 < 1
1817a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 0 < 1)
192gzrngunitlem 21339 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴))
2013, 15, 16, 18, 19ltletrd 11276 . . . . . . . . . . . . 13 (𝐴 ∈ (Unit‘𝑍) → 0 < (abs‘𝐴))
2120gt0ne0d 11684 . . . . . . . . . . . 12 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ≠ 0)
2212abs00ad 15197 . . . . . . . . . . . . 13 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
2322necon3bid 2969 . . . . . . . . . . . 12 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
2421, 23mpbid 232 . . . . . . . . . . 11 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ≠ 0)
25 cnfldinv 21309 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
2612, 24, 25syl2anc 584 . . . . . . . . . 10 (𝐴 ∈ (Unit‘𝑍) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
2710, 26eqtr3d 2766 . . . . . . . . 9 (𝐴 ∈ (Unit‘𝑍) → ((invr𝑍)‘𝐴) = (1 / 𝐴))
282subrgring 20459 . . . . . . . . . . 11 (ℤ[i] ∈ (SubRing‘ℂfld) → 𝑍 ∈ Ring)
291, 28ax-mp 5 . . . . . . . . . 10 𝑍 ∈ Ring
305, 8unitinvcl 20275 . . . . . . . . . 10 ((𝑍 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑍)) → ((invr𝑍)‘𝐴) ∈ (Unit‘𝑍))
3129, 30mpan 690 . . . . . . . . 9 (𝐴 ∈ (Unit‘𝑍) → ((invr𝑍)‘𝐴) ∈ (Unit‘𝑍))
3227, 31eqeltrrd 2829 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → (1 / 𝐴) ∈ (Unit‘𝑍))
332gzrngunitlem 21339 . . . . . . . 8 ((1 / 𝐴) ∈ (Unit‘𝑍) → 1 ≤ (abs‘(1 / 𝐴)))
3432, 33syl 17 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘(1 / 𝐴)))
35 1cnd 11110 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → 1 ∈ ℂ)
3635, 12, 24absdivd 15365 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴)))
3734, 36breqtrd 5118 . . . . . 6 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ ((abs‘1) / (abs‘𝐴)))
38 1div1e1 11815 . . . . . 6 (1 / 1) = 1
39 abs1 15204 . . . . . . . 8 (abs‘1) = 1
4039eqcomi 2738 . . . . . . 7 1 = (abs‘1)
4140oveq1i 7359 . . . . . 6 (1 / (abs‘𝐴)) = ((abs‘1) / (abs‘𝐴))
4237, 38, 413brtr4g 5126 . . . . 5 (𝐴 ∈ (Unit‘𝑍) → (1 / 1) ≤ (1 / (abs‘𝐴)))
43 lerec 12008 . . . . . 6 ((((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴)) ∧ (1 ∈ ℝ ∧ 0 < 1)) → ((abs‘𝐴) ≤ 1 ↔ (1 / 1) ≤ (1 / (abs‘𝐴))))
4416, 20, 15, 18, 43syl22anc 838 . . . . 5 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) ≤ 1 ↔ (1 / 1) ≤ (1 / (abs‘𝐴))))
4542, 44mpbird 257 . . . 4 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ≤ 1)
46 letri3 11201 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐴) = 1 ↔ ((abs‘𝐴) ≤ 1 ∧ 1 ≤ (abs‘𝐴))))
4716, 14, 46sylancl 586 . . . 4 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 1 ↔ ((abs‘𝐴) ≤ 1 ∧ 1 ≤ (abs‘𝐴))))
4845, 19, 47mpbir2and 713 . . 3 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) = 1)
496, 48jca 511 . 2 (𝐴 ∈ (Unit‘𝑍) → (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
5011adantr 480 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℂ)
51 simpr 484 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
52 ax-1ne0 11078 . . . . . . 7 1 ≠ 0
5352a1i 11 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 1 ≠ 0)
5451, 53eqnetrd 2992 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (abs‘𝐴) ≠ 0)
55 fveq2 6822 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
56 abs0 15192 . . . . . . 7 (abs‘0) = 0
5755, 56eqtrdi 2780 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = 0)
5857necon3i 2957 . . . . 5 ((abs‘𝐴) ≠ 0 → 𝐴 ≠ 0)
5954, 58syl 17 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ≠ 0)
60 eldifsn 4737 . . . 4 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
6150, 59, 60sylanbrc 583 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (ℂ ∖ {0}))
62 simpl 482 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℤ[i])
6350, 59, 25syl2anc 584 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
6450absvalsqd 15352 . . . . . . 7 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
6551oveq1d 7364 . . . . . . . 8 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (1↑2))
66 sq1 14102 . . . . . . . 8 (1↑2) = 1
6765, 66eqtrdi 2780 . . . . . . 7 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = 1)
6864, 67eqtr3d 2766 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (𝐴 · (∗‘𝐴)) = 1)
6968oveq1d 7364 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((𝐴 · (∗‘𝐴)) / 𝐴) = (1 / 𝐴))
7050cjcld 15103 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (∗‘𝐴) ∈ ℂ)
7170, 50, 59divcan3d 11905 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((𝐴 · (∗‘𝐴)) / 𝐴) = (∗‘𝐴))
7263, 69, 713eqtr2d 2770 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (∗‘𝐴))
73 gzcjcl 16848 . . . . 5 (𝐴 ∈ ℤ[i] → (∗‘𝐴) ∈ ℤ[i])
7473adantr 480 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (∗‘𝐴) ∈ ℤ[i])
7572, 74eqeltrd 2828 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) ∈ ℤ[i])
76 cnfldbas 21265 . . . . . 6 ℂ = (Base‘ℂfld)
77 cnfld0 21299 . . . . . 6 0 = (0g‘ℂfld)
78 cndrng 21305 . . . . . 6 fld ∈ DivRing
7976, 77, 78drngui 20620 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
802, 79, 5, 7subrgunit 20475 . . . 4 (ℤ[i] ∈ (SubRing‘ℂfld) → (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ[i] ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ[i])))
811, 80ax-mp 5 . . 3 (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ[i] ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ[i]))
8261, 62, 75, 81syl3anbrc 1344 . 2 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (Unit‘𝑍))
8349, 82impbii 209 1 (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3900  {csn 4577   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014   < clt 11149  cle 11150   / cdiv 11777  2c2 12183  cexp 13968  ccj 15003  abscabs 15141  ℤ[i]cgz 16841  Basecbs 17120  s cress 17141  Ringcrg 20118  Unitcui 20240  invrcinvr 20272  SubRingcsubrg 20454  fldccnfld 21261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-gz 16842  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-subg 19002  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-subrng 20431  df-subrg 20455  df-drng 20616  df-cnfld 21262
This theorem is referenced by:  zringunit  21373
  Copyright terms: Public domain W3C validator