Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gzrngunit Structured version   Visualization version   GIF version

Theorem gzrngunit 20232
 Description: The units on ℤ[i] are the gaussian integers with norm 1. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
gzrng.1 𝑍 = (ℂflds ℤ[i])
Assertion
Ref Expression
gzrngunit (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))

Proof of Theorem gzrngunit
StepHypRef Expression
1 gzsubrg 20220 . . . . 5 ℤ[i] ∈ (SubRing‘ℂfld)
2 gzrng.1 . . . . . 6 𝑍 = (ℂflds ℤ[i])
32subrgbas 19612 . . . . 5 (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] = (Base‘𝑍))
41, 3ax-mp 5 . . . 4 ℤ[i] = (Base‘𝑍)
5 eqid 2758 . . . 4 (Unit‘𝑍) = (Unit‘𝑍)
64, 5unitcl 19480 . . 3 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℤ[i])
7 eqid 2758 . . . . . . . . . . . 12 (invr‘ℂfld) = (invr‘ℂfld)
8 eqid 2758 . . . . . . . . . . . 12 (invr𝑍) = (invr𝑍)
92, 7, 5, 8subrginv 19619 . . . . . . . . . . 11 ((ℤ[i] ∈ (SubRing‘ℂfld) ∧ 𝐴 ∈ (Unit‘𝑍)) → ((invr‘ℂfld)‘𝐴) = ((invr𝑍)‘𝐴))
101, 9mpan 689 . . . . . . . . . 10 (𝐴 ∈ (Unit‘𝑍) → ((invr‘ℂfld)‘𝐴) = ((invr𝑍)‘𝐴))
11 gzcn 16323 . . . . . . . . . . . 12 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
126, 11syl 17 . . . . . . . . . . 11 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℂ)
13 0red 10682 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 0 ∈ ℝ)
14 1re 10679 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 1 ∈ ℝ)
1612abscld 14844 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℝ)
17 0lt1 11200 . . . . . . . . . . . . . . 15 0 < 1
1817a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 0 < 1)
192gzrngunitlem 20231 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴))
2013, 15, 16, 18, 19ltletrd 10838 . . . . . . . . . . . . 13 (𝐴 ∈ (Unit‘𝑍) → 0 < (abs‘𝐴))
2120gt0ne0d 11242 . . . . . . . . . . . 12 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ≠ 0)
2212abs00ad 14698 . . . . . . . . . . . . 13 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
2322necon3bid 2995 . . . . . . . . . . . 12 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
2421, 23mpbid 235 . . . . . . . . . . 11 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ≠ 0)
25 cnfldinv 20197 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
2612, 24, 25syl2anc 587 . . . . . . . . . 10 (𝐴 ∈ (Unit‘𝑍) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
2710, 26eqtr3d 2795 . . . . . . . . 9 (𝐴 ∈ (Unit‘𝑍) → ((invr𝑍)‘𝐴) = (1 / 𝐴))
282subrgring 19606 . . . . . . . . . . 11 (ℤ[i] ∈ (SubRing‘ℂfld) → 𝑍 ∈ Ring)
291, 28ax-mp 5 . . . . . . . . . 10 𝑍 ∈ Ring
305, 8unitinvcl 19495 . . . . . . . . . 10 ((𝑍 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑍)) → ((invr𝑍)‘𝐴) ∈ (Unit‘𝑍))
3129, 30mpan 689 . . . . . . . . 9 (𝐴 ∈ (Unit‘𝑍) → ((invr𝑍)‘𝐴) ∈ (Unit‘𝑍))
3227, 31eqeltrrd 2853 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → (1 / 𝐴) ∈ (Unit‘𝑍))
332gzrngunitlem 20231 . . . . . . . 8 ((1 / 𝐴) ∈ (Unit‘𝑍) → 1 ≤ (abs‘(1 / 𝐴)))
3432, 33syl 17 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘(1 / 𝐴)))
35 1cnd 10674 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → 1 ∈ ℂ)
3635, 12, 24absdivd 14863 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴)))
3734, 36breqtrd 5058 . . . . . 6 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ ((abs‘1) / (abs‘𝐴)))
38 1div1e1 11368 . . . . . 6 (1 / 1) = 1
39 abs1 14705 . . . . . . . 8 (abs‘1) = 1
4039eqcomi 2767 . . . . . . 7 1 = (abs‘1)
4140oveq1i 7160 . . . . . 6 (1 / (abs‘𝐴)) = ((abs‘1) / (abs‘𝐴))
4237, 38, 413brtr4g 5066 . . . . 5 (𝐴 ∈ (Unit‘𝑍) → (1 / 1) ≤ (1 / (abs‘𝐴)))
43 lerec 11561 . . . . . 6 ((((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴)) ∧ (1 ∈ ℝ ∧ 0 < 1)) → ((abs‘𝐴) ≤ 1 ↔ (1 / 1) ≤ (1 / (abs‘𝐴))))
4416, 20, 15, 18, 43syl22anc 837 . . . . 5 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) ≤ 1 ↔ (1 / 1) ≤ (1 / (abs‘𝐴))))
4542, 44mpbird 260 . . . 4 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ≤ 1)
46 letri3 10764 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐴) = 1 ↔ ((abs‘𝐴) ≤ 1 ∧ 1 ≤ (abs‘𝐴))))
4716, 14, 46sylancl 589 . . . 4 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 1 ↔ ((abs‘𝐴) ≤ 1 ∧ 1 ≤ (abs‘𝐴))))
4845, 19, 47mpbir2and 712 . . 3 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) = 1)
496, 48jca 515 . 2 (𝐴 ∈ (Unit‘𝑍) → (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
5011adantr 484 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℂ)
51 simpr 488 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
52 ax-1ne0 10644 . . . . . . 7 1 ≠ 0
5352a1i 11 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 1 ≠ 0)
5451, 53eqnetrd 3018 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (abs‘𝐴) ≠ 0)
55 fveq2 6658 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
56 abs0 14693 . . . . . . 7 (abs‘0) = 0
5755, 56eqtrdi 2809 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = 0)
5857necon3i 2983 . . . . 5 ((abs‘𝐴) ≠ 0 → 𝐴 ≠ 0)
5954, 58syl 17 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ≠ 0)
60 eldifsn 4677 . . . 4 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
6150, 59, 60sylanbrc 586 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (ℂ ∖ {0}))
62 simpl 486 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℤ[i])
6350, 59, 25syl2anc 587 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
6450absvalsqd 14850 . . . . . . 7 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
6551oveq1d 7165 . . . . . . . 8 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (1↑2))
66 sq1 13608 . . . . . . . 8 (1↑2) = 1
6765, 66eqtrdi 2809 . . . . . . 7 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = 1)
6864, 67eqtr3d 2795 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (𝐴 · (∗‘𝐴)) = 1)
6968oveq1d 7165 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((𝐴 · (∗‘𝐴)) / 𝐴) = (1 / 𝐴))
7050cjcld 14603 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (∗‘𝐴) ∈ ℂ)
7170, 50, 59divcan3d 11459 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((𝐴 · (∗‘𝐴)) / 𝐴) = (∗‘𝐴))
7263, 69, 713eqtr2d 2799 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (∗‘𝐴))
73 gzcjcl 16327 . . . . 5 (𝐴 ∈ ℤ[i] → (∗‘𝐴) ∈ ℤ[i])
7473adantr 484 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (∗‘𝐴) ∈ ℤ[i])
7572, 74eqeltrd 2852 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) ∈ ℤ[i])
76 cnfldbas 20170 . . . . . 6 ℂ = (Base‘ℂfld)
77 cnfld0 20190 . . . . . 6 0 = (0g‘ℂfld)
78 cndrng 20195 . . . . . 6 fld ∈ DivRing
7976, 77, 78drngui 19576 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
802, 79, 5, 7subrgunit 19621 . . . 4 (ℤ[i] ∈ (SubRing‘ℂfld) → (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ[i] ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ[i])))
811, 80ax-mp 5 . . 3 (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ[i] ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ[i]))
8261, 62, 75, 81syl3anbrc 1340 . 2 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (Unit‘𝑍))
8349, 82impbii 212 1 (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951   ∖ cdif 3855  {csn 4522   class class class wbr 5032  ‘cfv 6335  (class class class)co 7150  ℂcc 10573  ℝcr 10574  0cc0 10575  1c1 10576   · cmul 10580   < clt 10713   ≤ cle 10714   / cdiv 11335  2c2 11729  ↑cexp 13479  ∗ccj 14503  abscabs 14641  ℤ[i]cgz 16320  Basecbs 16541   ↾s cress 16542  Ringcrg 19365  Unitcui 19460  invrcinvr 19492  SubRingcsubrg 19599  ℂfldccnfld 20166 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-tpos 7902  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-rp 12431  df-fz 12940  df-seq 13419  df-exp 13480  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-gz 16321  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-subg 18343  df-cmn 18975  df-mgp 19308  df-ur 19320  df-ring 19367  df-cring 19368  df-oppr 19444  df-dvdsr 19462  df-unit 19463  df-invr 19493  df-dvr 19504  df-drng 19572  df-subrg 19601  df-cnfld 20167 This theorem is referenced by:  zringunit  20256
 Copyright terms: Public domain W3C validator