MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gzrngunit Structured version   Visualization version   GIF version

Theorem gzrngunit 20576
Description: The units on ℤ[i] are the gaussian integers with norm 1. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
gzrng.1 𝑍 = (ℂflds ℤ[i])
Assertion
Ref Expression
gzrngunit (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))

Proof of Theorem gzrngunit
StepHypRef Expression
1 gzsubrg 20564 . . . . 5 ℤ[i] ∈ (SubRing‘ℂfld)
2 gzrng.1 . . . . . 6 𝑍 = (ℂflds ℤ[i])
32subrgbas 19948 . . . . 5 (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] = (Base‘𝑍))
41, 3ax-mp 5 . . . 4 ℤ[i] = (Base‘𝑍)
5 eqid 2738 . . . 4 (Unit‘𝑍) = (Unit‘𝑍)
64, 5unitcl 19816 . . 3 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℤ[i])
7 eqid 2738 . . . . . . . . . . . 12 (invr‘ℂfld) = (invr‘ℂfld)
8 eqid 2738 . . . . . . . . . . . 12 (invr𝑍) = (invr𝑍)
92, 7, 5, 8subrginv 19955 . . . . . . . . . . 11 ((ℤ[i] ∈ (SubRing‘ℂfld) ∧ 𝐴 ∈ (Unit‘𝑍)) → ((invr‘ℂfld)‘𝐴) = ((invr𝑍)‘𝐴))
101, 9mpan 686 . . . . . . . . . 10 (𝐴 ∈ (Unit‘𝑍) → ((invr‘ℂfld)‘𝐴) = ((invr𝑍)‘𝐴))
11 gzcn 16561 . . . . . . . . . . . 12 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
126, 11syl 17 . . . . . . . . . . 11 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℂ)
13 0red 10909 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 0 ∈ ℝ)
14 1re 10906 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 1 ∈ ℝ)
1612abscld 15076 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℝ)
17 0lt1 11427 . . . . . . . . . . . . . . 15 0 < 1
1817a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 0 < 1)
192gzrngunitlem 20575 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴))
2013, 15, 16, 18, 19ltletrd 11065 . . . . . . . . . . . . 13 (𝐴 ∈ (Unit‘𝑍) → 0 < (abs‘𝐴))
2120gt0ne0d 11469 . . . . . . . . . . . 12 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ≠ 0)
2212abs00ad 14930 . . . . . . . . . . . . 13 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
2322necon3bid 2987 . . . . . . . . . . . 12 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
2421, 23mpbid 231 . . . . . . . . . . 11 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ≠ 0)
25 cnfldinv 20541 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
2612, 24, 25syl2anc 583 . . . . . . . . . 10 (𝐴 ∈ (Unit‘𝑍) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
2710, 26eqtr3d 2780 . . . . . . . . 9 (𝐴 ∈ (Unit‘𝑍) → ((invr𝑍)‘𝐴) = (1 / 𝐴))
282subrgring 19942 . . . . . . . . . . 11 (ℤ[i] ∈ (SubRing‘ℂfld) → 𝑍 ∈ Ring)
291, 28ax-mp 5 . . . . . . . . . 10 𝑍 ∈ Ring
305, 8unitinvcl 19831 . . . . . . . . . 10 ((𝑍 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑍)) → ((invr𝑍)‘𝐴) ∈ (Unit‘𝑍))
3129, 30mpan 686 . . . . . . . . 9 (𝐴 ∈ (Unit‘𝑍) → ((invr𝑍)‘𝐴) ∈ (Unit‘𝑍))
3227, 31eqeltrrd 2840 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → (1 / 𝐴) ∈ (Unit‘𝑍))
332gzrngunitlem 20575 . . . . . . . 8 ((1 / 𝐴) ∈ (Unit‘𝑍) → 1 ≤ (abs‘(1 / 𝐴)))
3432, 33syl 17 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘(1 / 𝐴)))
35 1cnd 10901 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → 1 ∈ ℂ)
3635, 12, 24absdivd 15095 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴)))
3734, 36breqtrd 5096 . . . . . 6 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ ((abs‘1) / (abs‘𝐴)))
38 1div1e1 11595 . . . . . 6 (1 / 1) = 1
39 abs1 14937 . . . . . . . 8 (abs‘1) = 1
4039eqcomi 2747 . . . . . . 7 1 = (abs‘1)
4140oveq1i 7265 . . . . . 6 (1 / (abs‘𝐴)) = ((abs‘1) / (abs‘𝐴))
4237, 38, 413brtr4g 5104 . . . . 5 (𝐴 ∈ (Unit‘𝑍) → (1 / 1) ≤ (1 / (abs‘𝐴)))
43 lerec 11788 . . . . . 6 ((((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴)) ∧ (1 ∈ ℝ ∧ 0 < 1)) → ((abs‘𝐴) ≤ 1 ↔ (1 / 1) ≤ (1 / (abs‘𝐴))))
4416, 20, 15, 18, 43syl22anc 835 . . . . 5 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) ≤ 1 ↔ (1 / 1) ≤ (1 / (abs‘𝐴))))
4542, 44mpbird 256 . . . 4 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ≤ 1)
46 letri3 10991 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐴) = 1 ↔ ((abs‘𝐴) ≤ 1 ∧ 1 ≤ (abs‘𝐴))))
4716, 14, 46sylancl 585 . . . 4 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 1 ↔ ((abs‘𝐴) ≤ 1 ∧ 1 ≤ (abs‘𝐴))))
4845, 19, 47mpbir2and 709 . . 3 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) = 1)
496, 48jca 511 . 2 (𝐴 ∈ (Unit‘𝑍) → (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
5011adantr 480 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℂ)
51 simpr 484 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
52 ax-1ne0 10871 . . . . . . 7 1 ≠ 0
5352a1i 11 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 1 ≠ 0)
5451, 53eqnetrd 3010 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (abs‘𝐴) ≠ 0)
55 fveq2 6756 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
56 abs0 14925 . . . . . . 7 (abs‘0) = 0
5755, 56eqtrdi 2795 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = 0)
5857necon3i 2975 . . . . 5 ((abs‘𝐴) ≠ 0 → 𝐴 ≠ 0)
5954, 58syl 17 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ≠ 0)
60 eldifsn 4717 . . . 4 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
6150, 59, 60sylanbrc 582 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (ℂ ∖ {0}))
62 simpl 482 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℤ[i])
6350, 59, 25syl2anc 583 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
6450absvalsqd 15082 . . . . . . 7 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
6551oveq1d 7270 . . . . . . . 8 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (1↑2))
66 sq1 13840 . . . . . . . 8 (1↑2) = 1
6765, 66eqtrdi 2795 . . . . . . 7 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = 1)
6864, 67eqtr3d 2780 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (𝐴 · (∗‘𝐴)) = 1)
6968oveq1d 7270 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((𝐴 · (∗‘𝐴)) / 𝐴) = (1 / 𝐴))
7050cjcld 14835 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (∗‘𝐴) ∈ ℂ)
7170, 50, 59divcan3d 11686 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((𝐴 · (∗‘𝐴)) / 𝐴) = (∗‘𝐴))
7263, 69, 713eqtr2d 2784 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (∗‘𝐴))
73 gzcjcl 16565 . . . . 5 (𝐴 ∈ ℤ[i] → (∗‘𝐴) ∈ ℤ[i])
7473adantr 480 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (∗‘𝐴) ∈ ℤ[i])
7572, 74eqeltrd 2839 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) ∈ ℤ[i])
76 cnfldbas 20514 . . . . . 6 ℂ = (Base‘ℂfld)
77 cnfld0 20534 . . . . . 6 0 = (0g‘ℂfld)
78 cndrng 20539 . . . . . 6 fld ∈ DivRing
7976, 77, 78drngui 19912 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
802, 79, 5, 7subrgunit 19957 . . . 4 (ℤ[i] ∈ (SubRing‘ℂfld) → (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ[i] ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ[i])))
811, 80ax-mp 5 . . 3 (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ[i] ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ[i]))
8261, 62, 75, 81syl3anbrc 1341 . 2 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (Unit‘𝑍))
8349, 82impbii 208 1 (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cdif 3880  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562  2c2 11958  cexp 13710  ccj 14735  abscabs 14873  ℤ[i]cgz 16558  Basecbs 16840  s cress 16867  Ringcrg 19698  Unitcui 19796  invrcinvr 19828  SubRingcsubrg 19935  fldccnfld 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-gz 16559  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-subrg 19937  df-cnfld 20511
This theorem is referenced by:  zringunit  20600
  Copyright terms: Public domain W3C validator