MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gzrngunit Structured version   Visualization version   GIF version

Theorem gzrngunit 21357
Description: The units on ℤ[i] are the gaussian integers with norm 1. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
gzrng.1 𝑍 = (ℂflds ℤ[i])
Assertion
Ref Expression
gzrngunit (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))

Proof of Theorem gzrngunit
StepHypRef Expression
1 gzsubrg 21345 . . . . 5 ℤ[i] ∈ (SubRing‘ℂfld)
2 gzrng.1 . . . . . 6 𝑍 = (ℂflds ℤ[i])
32subrgbas 20497 . . . . 5 (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] = (Base‘𝑍))
41, 3ax-mp 5 . . . 4 ℤ[i] = (Base‘𝑍)
5 eqid 2730 . . . 4 (Unit‘𝑍) = (Unit‘𝑍)
64, 5unitcl 20291 . . 3 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℤ[i])
7 eqid 2730 . . . . . . . . . . . 12 (invr‘ℂfld) = (invr‘ℂfld)
8 eqid 2730 . . . . . . . . . . . 12 (invr𝑍) = (invr𝑍)
92, 7, 5, 8subrginv 20504 . . . . . . . . . . 11 ((ℤ[i] ∈ (SubRing‘ℂfld) ∧ 𝐴 ∈ (Unit‘𝑍)) → ((invr‘ℂfld)‘𝐴) = ((invr𝑍)‘𝐴))
101, 9mpan 690 . . . . . . . . . 10 (𝐴 ∈ (Unit‘𝑍) → ((invr‘ℂfld)‘𝐴) = ((invr𝑍)‘𝐴))
11 gzcn 16910 . . . . . . . . . . . 12 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
126, 11syl 17 . . . . . . . . . . 11 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℂ)
13 0red 11184 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 0 ∈ ℝ)
14 1re 11181 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 1 ∈ ℝ)
1612abscld 15412 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℝ)
17 0lt1 11707 . . . . . . . . . . . . . . 15 0 < 1
1817a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 0 < 1)
192gzrngunitlem 21356 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴))
2013, 15, 16, 18, 19ltletrd 11341 . . . . . . . . . . . . 13 (𝐴 ∈ (Unit‘𝑍) → 0 < (abs‘𝐴))
2120gt0ne0d 11749 . . . . . . . . . . . 12 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ≠ 0)
2212abs00ad 15263 . . . . . . . . . . . . 13 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
2322necon3bid 2970 . . . . . . . . . . . 12 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
2421, 23mpbid 232 . . . . . . . . . . 11 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ≠ 0)
25 cnfldinv 21321 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
2612, 24, 25syl2anc 584 . . . . . . . . . 10 (𝐴 ∈ (Unit‘𝑍) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
2710, 26eqtr3d 2767 . . . . . . . . 9 (𝐴 ∈ (Unit‘𝑍) → ((invr𝑍)‘𝐴) = (1 / 𝐴))
282subrgring 20490 . . . . . . . . . . 11 (ℤ[i] ∈ (SubRing‘ℂfld) → 𝑍 ∈ Ring)
291, 28ax-mp 5 . . . . . . . . . 10 𝑍 ∈ Ring
305, 8unitinvcl 20306 . . . . . . . . . 10 ((𝑍 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑍)) → ((invr𝑍)‘𝐴) ∈ (Unit‘𝑍))
3129, 30mpan 690 . . . . . . . . 9 (𝐴 ∈ (Unit‘𝑍) → ((invr𝑍)‘𝐴) ∈ (Unit‘𝑍))
3227, 31eqeltrrd 2830 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → (1 / 𝐴) ∈ (Unit‘𝑍))
332gzrngunitlem 21356 . . . . . . . 8 ((1 / 𝐴) ∈ (Unit‘𝑍) → 1 ≤ (abs‘(1 / 𝐴)))
3432, 33syl 17 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘(1 / 𝐴)))
35 1cnd 11176 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → 1 ∈ ℂ)
3635, 12, 24absdivd 15431 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴)))
3734, 36breqtrd 5136 . . . . . 6 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ ((abs‘1) / (abs‘𝐴)))
38 1div1e1 11880 . . . . . 6 (1 / 1) = 1
39 abs1 15270 . . . . . . . 8 (abs‘1) = 1
4039eqcomi 2739 . . . . . . 7 1 = (abs‘1)
4140oveq1i 7400 . . . . . 6 (1 / (abs‘𝐴)) = ((abs‘1) / (abs‘𝐴))
4237, 38, 413brtr4g 5144 . . . . 5 (𝐴 ∈ (Unit‘𝑍) → (1 / 1) ≤ (1 / (abs‘𝐴)))
43 lerec 12073 . . . . . 6 ((((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴)) ∧ (1 ∈ ℝ ∧ 0 < 1)) → ((abs‘𝐴) ≤ 1 ↔ (1 / 1) ≤ (1 / (abs‘𝐴))))
4416, 20, 15, 18, 43syl22anc 838 . . . . 5 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) ≤ 1 ↔ (1 / 1) ≤ (1 / (abs‘𝐴))))
4542, 44mpbird 257 . . . 4 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ≤ 1)
46 letri3 11266 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐴) = 1 ↔ ((abs‘𝐴) ≤ 1 ∧ 1 ≤ (abs‘𝐴))))
4716, 14, 46sylancl 586 . . . 4 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 1 ↔ ((abs‘𝐴) ≤ 1 ∧ 1 ≤ (abs‘𝐴))))
4845, 19, 47mpbir2and 713 . . 3 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) = 1)
496, 48jca 511 . 2 (𝐴 ∈ (Unit‘𝑍) → (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
5011adantr 480 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℂ)
51 simpr 484 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
52 ax-1ne0 11144 . . . . . . 7 1 ≠ 0
5352a1i 11 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 1 ≠ 0)
5451, 53eqnetrd 2993 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (abs‘𝐴) ≠ 0)
55 fveq2 6861 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
56 abs0 15258 . . . . . . 7 (abs‘0) = 0
5755, 56eqtrdi 2781 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = 0)
5857necon3i 2958 . . . . 5 ((abs‘𝐴) ≠ 0 → 𝐴 ≠ 0)
5954, 58syl 17 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ≠ 0)
60 eldifsn 4753 . . . 4 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
6150, 59, 60sylanbrc 583 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (ℂ ∖ {0}))
62 simpl 482 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℤ[i])
6350, 59, 25syl2anc 584 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
6450absvalsqd 15418 . . . . . . 7 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
6551oveq1d 7405 . . . . . . . 8 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (1↑2))
66 sq1 14167 . . . . . . . 8 (1↑2) = 1
6765, 66eqtrdi 2781 . . . . . . 7 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = 1)
6864, 67eqtr3d 2767 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (𝐴 · (∗‘𝐴)) = 1)
6968oveq1d 7405 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((𝐴 · (∗‘𝐴)) / 𝐴) = (1 / 𝐴))
7050cjcld 15169 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (∗‘𝐴) ∈ ℂ)
7170, 50, 59divcan3d 11970 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((𝐴 · (∗‘𝐴)) / 𝐴) = (∗‘𝐴))
7263, 69, 713eqtr2d 2771 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (∗‘𝐴))
73 gzcjcl 16914 . . . . 5 (𝐴 ∈ ℤ[i] → (∗‘𝐴) ∈ ℤ[i])
7473adantr 480 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (∗‘𝐴) ∈ ℤ[i])
7572, 74eqeltrd 2829 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) ∈ ℤ[i])
76 cnfldbas 21275 . . . . . 6 ℂ = (Base‘ℂfld)
77 cnfld0 21311 . . . . . 6 0 = (0g‘ℂfld)
78 cndrng 21317 . . . . . 6 fld ∈ DivRing
7976, 77, 78drngui 20651 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
802, 79, 5, 7subrgunit 20506 . . . 4 (ℤ[i] ∈ (SubRing‘ℂfld) → (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ[i] ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ[i])))
811, 80ax-mp 5 . . 3 (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ[i] ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ[i]))
8261, 62, 75, 81syl3anbrc 1344 . 2 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (Unit‘𝑍))
8349, 82impbii 209 1 (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cdif 3914  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842  2c2 12248  cexp 14033  ccj 15069  abscabs 15207  ℤ[i]cgz 16907  Basecbs 17186  s cress 17207  Ringcrg 20149  Unitcui 20271  invrcinvr 20303  SubRingcsubrg 20485  fldccnfld 21271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-gz 16908  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-subrng 20462  df-subrg 20486  df-drng 20647  df-cnfld 21272
This theorem is referenced by:  zringunit  21383
  Copyright terms: Public domain W3C validator