MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gzrngunit Structured version   Visualization version   GIF version

Theorem gzrngunit 21375
Description: The units on ℤ[i] are the gaussian integers with norm 1. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
gzrng.1 𝑍 = (ℂflds ℤ[i])
Assertion
Ref Expression
gzrngunit (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))

Proof of Theorem gzrngunit
StepHypRef Expression
1 gzsubrg 21363 . . . . 5 ℤ[i] ∈ (SubRing‘ℂfld)
2 gzrng.1 . . . . . 6 𝑍 = (ℂflds ℤ[i])
32subrgbas 20501 . . . . 5 (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] = (Base‘𝑍))
41, 3ax-mp 5 . . . 4 ℤ[i] = (Base‘𝑍)
5 eqid 2729 . . . 4 (Unit‘𝑍) = (Unit‘𝑍)
64, 5unitcl 20295 . . 3 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℤ[i])
7 eqid 2729 . . . . . . . . . . . 12 (invr‘ℂfld) = (invr‘ℂfld)
8 eqid 2729 . . . . . . . . . . . 12 (invr𝑍) = (invr𝑍)
92, 7, 5, 8subrginv 20508 . . . . . . . . . . 11 ((ℤ[i] ∈ (SubRing‘ℂfld) ∧ 𝐴 ∈ (Unit‘𝑍)) → ((invr‘ℂfld)‘𝐴) = ((invr𝑍)‘𝐴))
101, 9mpan 690 . . . . . . . . . 10 (𝐴 ∈ (Unit‘𝑍) → ((invr‘ℂfld)‘𝐴) = ((invr𝑍)‘𝐴))
11 gzcn 16879 . . . . . . . . . . . 12 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
126, 11syl 17 . . . . . . . . . . 11 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℂ)
13 0red 11153 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 0 ∈ ℝ)
14 1re 11150 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 1 ∈ ℝ)
1612abscld 15381 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℝ)
17 0lt1 11676 . . . . . . . . . . . . . . 15 0 < 1
1817a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 0 < 1)
192gzrngunitlem 21374 . . . . . . . . . . . . . 14 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴))
2013, 15, 16, 18, 19ltletrd 11310 . . . . . . . . . . . . 13 (𝐴 ∈ (Unit‘𝑍) → 0 < (abs‘𝐴))
2120gt0ne0d 11718 . . . . . . . . . . . 12 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ≠ 0)
2212abs00ad 15232 . . . . . . . . . . . . 13 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
2322necon3bid 2969 . . . . . . . . . . . 12 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
2421, 23mpbid 232 . . . . . . . . . . 11 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ≠ 0)
25 cnfldinv 21344 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
2612, 24, 25syl2anc 584 . . . . . . . . . 10 (𝐴 ∈ (Unit‘𝑍) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
2710, 26eqtr3d 2766 . . . . . . . . 9 (𝐴 ∈ (Unit‘𝑍) → ((invr𝑍)‘𝐴) = (1 / 𝐴))
282subrgring 20494 . . . . . . . . . . 11 (ℤ[i] ∈ (SubRing‘ℂfld) → 𝑍 ∈ Ring)
291, 28ax-mp 5 . . . . . . . . . 10 𝑍 ∈ Ring
305, 8unitinvcl 20310 . . . . . . . . . 10 ((𝑍 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑍)) → ((invr𝑍)‘𝐴) ∈ (Unit‘𝑍))
3129, 30mpan 690 . . . . . . . . 9 (𝐴 ∈ (Unit‘𝑍) → ((invr𝑍)‘𝐴) ∈ (Unit‘𝑍))
3227, 31eqeltrrd 2829 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → (1 / 𝐴) ∈ (Unit‘𝑍))
332gzrngunitlem 21374 . . . . . . . 8 ((1 / 𝐴) ∈ (Unit‘𝑍) → 1 ≤ (abs‘(1 / 𝐴)))
3432, 33syl 17 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘(1 / 𝐴)))
35 1cnd 11145 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → 1 ∈ ℂ)
3635, 12, 24absdivd 15400 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴)))
3734, 36breqtrd 5128 . . . . . 6 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ ((abs‘1) / (abs‘𝐴)))
38 1div1e1 11849 . . . . . 6 (1 / 1) = 1
39 abs1 15239 . . . . . . . 8 (abs‘1) = 1
4039eqcomi 2738 . . . . . . 7 1 = (abs‘1)
4140oveq1i 7379 . . . . . 6 (1 / (abs‘𝐴)) = ((abs‘1) / (abs‘𝐴))
4237, 38, 413brtr4g 5136 . . . . 5 (𝐴 ∈ (Unit‘𝑍) → (1 / 1) ≤ (1 / (abs‘𝐴)))
43 lerec 12042 . . . . . 6 ((((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴)) ∧ (1 ∈ ℝ ∧ 0 < 1)) → ((abs‘𝐴) ≤ 1 ↔ (1 / 1) ≤ (1 / (abs‘𝐴))))
4416, 20, 15, 18, 43syl22anc 838 . . . . 5 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) ≤ 1 ↔ (1 / 1) ≤ (1 / (abs‘𝐴))))
4542, 44mpbird 257 . . . 4 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ≤ 1)
46 letri3 11235 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐴) = 1 ↔ ((abs‘𝐴) ≤ 1 ∧ 1 ≤ (abs‘𝐴))))
4716, 14, 46sylancl 586 . . . 4 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 1 ↔ ((abs‘𝐴) ≤ 1 ∧ 1 ≤ (abs‘𝐴))))
4845, 19, 47mpbir2and 713 . . 3 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) = 1)
496, 48jca 511 . 2 (𝐴 ∈ (Unit‘𝑍) → (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
5011adantr 480 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℂ)
51 simpr 484 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
52 ax-1ne0 11113 . . . . . . 7 1 ≠ 0
5352a1i 11 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 1 ≠ 0)
5451, 53eqnetrd 2992 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (abs‘𝐴) ≠ 0)
55 fveq2 6840 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
56 abs0 15227 . . . . . . 7 (abs‘0) = 0
5755, 56eqtrdi 2780 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = 0)
5857necon3i 2957 . . . . 5 ((abs‘𝐴) ≠ 0 → 𝐴 ≠ 0)
5954, 58syl 17 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ≠ 0)
60 eldifsn 4746 . . . 4 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
6150, 59, 60sylanbrc 583 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (ℂ ∖ {0}))
62 simpl 482 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℤ[i])
6350, 59, 25syl2anc 584 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
6450absvalsqd 15387 . . . . . . 7 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
6551oveq1d 7384 . . . . . . . 8 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (1↑2))
66 sq1 14136 . . . . . . . 8 (1↑2) = 1
6765, 66eqtrdi 2780 . . . . . . 7 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = 1)
6864, 67eqtr3d 2766 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (𝐴 · (∗‘𝐴)) = 1)
6968oveq1d 7384 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((𝐴 · (∗‘𝐴)) / 𝐴) = (1 / 𝐴))
7050cjcld 15138 . . . . . 6 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (∗‘𝐴) ∈ ℂ)
7170, 50, 59divcan3d 11939 . . . . 5 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((𝐴 · (∗‘𝐴)) / 𝐴) = (∗‘𝐴))
7263, 69, 713eqtr2d 2770 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (∗‘𝐴))
73 gzcjcl 16883 . . . . 5 (𝐴 ∈ ℤ[i] → (∗‘𝐴) ∈ ℤ[i])
7473adantr 480 . . . 4 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → (∗‘𝐴) ∈ ℤ[i])
7572, 74eqeltrd 2828 . . 3 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) ∈ ℤ[i])
76 cnfldbas 21300 . . . . . 6 ℂ = (Base‘ℂfld)
77 cnfld0 21334 . . . . . 6 0 = (0g‘ℂfld)
78 cndrng 21340 . . . . . 6 fld ∈ DivRing
7976, 77, 78drngui 20655 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
802, 79, 5, 7subrgunit 20510 . . . 4 (ℤ[i] ∈ (SubRing‘ℂfld) → (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ[i] ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ[i])))
811, 80ax-mp 5 . . 3 (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ[i] ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ[i]))
8261, 62, 75, 81syl3anbrc 1344 . 2 ((𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (Unit‘𝑍))
8349, 82impbii 209 1 (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908  {csn 4585   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184  cle 11185   / cdiv 11811  2c2 12217  cexp 14002  ccj 15038  abscabs 15176  ℤ[i]cgz 16876  Basecbs 17155  s cress 17176  Ringcrg 20153  Unitcui 20275  invrcinvr 20307  SubRingcsubrg 20489  fldccnfld 21296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-gz 16877  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-subg 19037  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-subrng 20466  df-subrg 20490  df-drng 20651  df-cnfld 21297
This theorem is referenced by:  zringunit  21408
  Copyright terms: Public domain W3C validator