| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul2sq | Structured version Visualization version GIF version | ||
| Description: Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| Ref | Expression |
|---|---|
| 2sq.1 | ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
| Ref | Expression |
|---|---|
| mul2sq | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sq.1 | . . 3 ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) | |
| 2 | 1 | 2sqlem1 27335 | . 2 ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
| 3 | 1 | 2sqlem1 27335 | . 2 ⊢ (𝐵 ∈ 𝑆 ↔ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2)) |
| 4 | reeanv 3210 | . . 3 ⊢ (∃𝑥 ∈ ℤ[i] ∃𝑦 ∈ ℤ[i] (𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) ↔ (∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2) ∧ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2))) | |
| 5 | gzmulcl 16916 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (𝑥 · 𝑦) ∈ ℤ[i]) | |
| 6 | gzcn 16910 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℤ[i] → 𝑥 ∈ ℂ) | |
| 7 | gzcn 16910 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℤ[i] → 𝑦 ∈ ℂ) | |
| 8 | absmul 15267 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) | |
| 9 | 6, 7, 8 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) |
| 10 | 9 | oveq1d 7405 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ((abs‘(𝑥 · 𝑦))↑2) = (((abs‘𝑥) · (abs‘𝑦))↑2)) |
| 11 | 6 | abscld 15412 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℤ[i] → (abs‘𝑥) ∈ ℝ) |
| 12 | 11 | recnd 11209 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℤ[i] → (abs‘𝑥) ∈ ℂ) |
| 13 | 7 | abscld 15412 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℤ[i] → (abs‘𝑦) ∈ ℝ) |
| 14 | 13 | recnd 11209 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℤ[i] → (abs‘𝑦) ∈ ℂ) |
| 15 | sqmul 14091 | . . . . . . . . 9 ⊢ (((abs‘𝑥) ∈ ℂ ∧ (abs‘𝑦) ∈ ℂ) → (((abs‘𝑥) · (abs‘𝑦))↑2) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2))) | |
| 16 | 12, 14, 15 | syl2an 596 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥) · (abs‘𝑦))↑2) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2))) |
| 17 | 10, 16 | eqtr2d 2766 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘(𝑥 · 𝑦))↑2)) |
| 18 | fveq2 6861 | . . . . . . . . 9 ⊢ (𝑧 = (𝑥 · 𝑦) → (abs‘𝑧) = (abs‘(𝑥 · 𝑦))) | |
| 19 | 18 | oveq1d 7405 | . . . . . . . 8 ⊢ (𝑧 = (𝑥 · 𝑦) → ((abs‘𝑧)↑2) = ((abs‘(𝑥 · 𝑦))↑2)) |
| 20 | 19 | rspceeqv 3614 | . . . . . . 7 ⊢ (((𝑥 · 𝑦) ∈ ℤ[i] ∧ (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘(𝑥 · 𝑦))↑2)) → ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2)) |
| 21 | 5, 17, 20 | syl2anc 584 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2)) |
| 22 | 1 | 2sqlem1 27335 | . . . . . 6 ⊢ ((((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆 ↔ ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2)) |
| 23 | 21, 22 | sylibr 234 | . . . . 5 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆) |
| 24 | oveq12 7399 | . . . . . 6 ⊢ ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2))) | |
| 25 | 24 | eleq1d 2814 | . . . . 5 ⊢ ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → ((𝐴 · 𝐵) ∈ 𝑆 ↔ (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆)) |
| 26 | 23, 25 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆)) |
| 27 | 26 | rexlimivv 3180 | . . 3 ⊢ (∃𝑥 ∈ ℤ[i] ∃𝑦 ∈ ℤ[i] (𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆) |
| 28 | 4, 27 | sylbir 235 | . 2 ⊢ ((∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2) ∧ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆) |
| 29 | 2, 3, 28 | syl2anb 598 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ↦ cmpt 5191 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 · cmul 11080 2c2 12248 ↑cexp 14033 abscabs 15207 ℤ[i]cgz 16907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-gz 16908 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |