MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul2sq Structured version   Visualization version   GIF version

Theorem mul2sq 25922
Description: Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
Assertion
Ref Expression
mul2sq ((𝐴𝑆𝐵𝑆) → (𝐴 · 𝐵) ∈ 𝑆)

Proof of Theorem mul2sq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . 3 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
212sqlem1 25920 . 2 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2))
312sqlem1 25920 . 2 (𝐵𝑆 ↔ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2))
4 reeanv 3365 . . 3 (∃𝑥 ∈ ℤ[i] ∃𝑦 ∈ ℤ[i] (𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) ↔ (∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2) ∧ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2)))
5 gzmulcl 16262 . . . . . . 7 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (𝑥 · 𝑦) ∈ ℤ[i])
6 gzcn 16256 . . . . . . . . . 10 (𝑥 ∈ ℤ[i] → 𝑥 ∈ ℂ)
7 gzcn 16256 . . . . . . . . . 10 (𝑦 ∈ ℤ[i] → 𝑦 ∈ ℂ)
8 absmul 14642 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
96, 7, 8syl2an 595 . . . . . . . . 9 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
109oveq1d 7160 . . . . . . . 8 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ((abs‘(𝑥 · 𝑦))↑2) = (((abs‘𝑥) · (abs‘𝑦))↑2))
116abscld 14784 . . . . . . . . . 10 (𝑥 ∈ ℤ[i] → (abs‘𝑥) ∈ ℝ)
1211recnd 10657 . . . . . . . . 9 (𝑥 ∈ ℤ[i] → (abs‘𝑥) ∈ ℂ)
137abscld 14784 . . . . . . . . . 10 (𝑦 ∈ ℤ[i] → (abs‘𝑦) ∈ ℝ)
1413recnd 10657 . . . . . . . . 9 (𝑦 ∈ ℤ[i] → (abs‘𝑦) ∈ ℂ)
15 sqmul 13473 . . . . . . . . 9 (((abs‘𝑥) ∈ ℂ ∧ (abs‘𝑦) ∈ ℂ) → (((abs‘𝑥) · (abs‘𝑦))↑2) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)))
1612, 14, 15syl2an 595 . . . . . . . 8 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥) · (abs‘𝑦))↑2) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)))
1710, 16eqtr2d 2854 . . . . . . 7 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘(𝑥 · 𝑦))↑2))
18 fveq2 6663 . . . . . . . . 9 (𝑧 = (𝑥 · 𝑦) → (abs‘𝑧) = (abs‘(𝑥 · 𝑦)))
1918oveq1d 7160 . . . . . . . 8 (𝑧 = (𝑥 · 𝑦) → ((abs‘𝑧)↑2) = ((abs‘(𝑥 · 𝑦))↑2))
2019rspceeqv 3635 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℤ[i] ∧ (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘(𝑥 · 𝑦))↑2)) → ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2))
215, 17, 20syl2anc 584 . . . . . 6 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2))
2212sqlem1 25920 . . . . . 6 ((((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆 ↔ ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2))
2321, 22sylibr 235 . . . . 5 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆)
24 oveq12 7154 . . . . . 6 ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)))
2524eleq1d 2894 . . . . 5 ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → ((𝐴 · 𝐵) ∈ 𝑆 ↔ (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆))
2623, 25syl5ibrcom 248 . . . 4 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆))
2726rexlimivv 3289 . . 3 (∃𝑥 ∈ ℤ[i] ∃𝑦 ∈ ℤ[i] (𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆)
284, 27sylbir 236 . 2 ((∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2) ∧ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆)
292, 3, 28syl2anb 597 1 ((𝐴𝑆𝐵𝑆) → (𝐴 · 𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wrex 3136  cmpt 5137  ran crn 5549  cfv 6348  (class class class)co 7145  cc 10523   · cmul 10530  2c2 11680  cexp 13417  abscabs 14581  ℤ[i]cgz 16253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-gz 16254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator