MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul2sq Structured version   Visualization version   GIF version

Theorem mul2sq 26300
Description: Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
Assertion
Ref Expression
mul2sq ((𝐴𝑆𝐵𝑆) → (𝐴 · 𝐵) ∈ 𝑆)

Proof of Theorem mul2sq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . 3 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
212sqlem1 26298 . 2 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2))
312sqlem1 26298 . 2 (𝐵𝑆 ↔ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2))
4 reeanv 3279 . . 3 (∃𝑥 ∈ ℤ[i] ∃𝑦 ∈ ℤ[i] (𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) ↔ (∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2) ∧ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2)))
5 gzmulcl 16491 . . . . . . 7 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (𝑥 · 𝑦) ∈ ℤ[i])
6 gzcn 16485 . . . . . . . . . 10 (𝑥 ∈ ℤ[i] → 𝑥 ∈ ℂ)
7 gzcn 16485 . . . . . . . . . 10 (𝑦 ∈ ℤ[i] → 𝑦 ∈ ℂ)
8 absmul 14858 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
96, 7, 8syl2an 599 . . . . . . . . 9 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
109oveq1d 7228 . . . . . . . 8 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ((abs‘(𝑥 · 𝑦))↑2) = (((abs‘𝑥) · (abs‘𝑦))↑2))
116abscld 15000 . . . . . . . . . 10 (𝑥 ∈ ℤ[i] → (abs‘𝑥) ∈ ℝ)
1211recnd 10861 . . . . . . . . 9 (𝑥 ∈ ℤ[i] → (abs‘𝑥) ∈ ℂ)
137abscld 15000 . . . . . . . . . 10 (𝑦 ∈ ℤ[i] → (abs‘𝑦) ∈ ℝ)
1413recnd 10861 . . . . . . . . 9 (𝑦 ∈ ℤ[i] → (abs‘𝑦) ∈ ℂ)
15 sqmul 13691 . . . . . . . . 9 (((abs‘𝑥) ∈ ℂ ∧ (abs‘𝑦) ∈ ℂ) → (((abs‘𝑥) · (abs‘𝑦))↑2) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)))
1612, 14, 15syl2an 599 . . . . . . . 8 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥) · (abs‘𝑦))↑2) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)))
1710, 16eqtr2d 2778 . . . . . . 7 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘(𝑥 · 𝑦))↑2))
18 fveq2 6717 . . . . . . . . 9 (𝑧 = (𝑥 · 𝑦) → (abs‘𝑧) = (abs‘(𝑥 · 𝑦)))
1918oveq1d 7228 . . . . . . . 8 (𝑧 = (𝑥 · 𝑦) → ((abs‘𝑧)↑2) = ((abs‘(𝑥 · 𝑦))↑2))
2019rspceeqv 3552 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℤ[i] ∧ (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘(𝑥 · 𝑦))↑2)) → ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2))
215, 17, 20syl2anc 587 . . . . . 6 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2))
2212sqlem1 26298 . . . . . 6 ((((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆 ↔ ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2))
2321, 22sylibr 237 . . . . 5 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆)
24 oveq12 7222 . . . . . 6 ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)))
2524eleq1d 2822 . . . . 5 ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → ((𝐴 · 𝐵) ∈ 𝑆 ↔ (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆))
2623, 25syl5ibrcom 250 . . . 4 ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆))
2726rexlimivv 3211 . . 3 (∃𝑥 ∈ ℤ[i] ∃𝑦 ∈ ℤ[i] (𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆)
284, 27sylbir 238 . 2 ((∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2) ∧ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆)
292, 3, 28syl2anb 601 1 ((𝐴𝑆𝐵𝑆) → (𝐴 · 𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wrex 3062  cmpt 5135  ran crn 5552  cfv 6380  (class class class)co 7213  cc 10727   · cmul 10734  2c2 11885  cexp 13635  abscabs 14797  ℤ[i]cgz 16482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-gz 16483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator