MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem4 Structured version   Visualization version   GIF version

Theorem 4sqlem4 16990
Description: Lemma for 4sq 17002. We can express the four-square property more compactly in terms of gaussian integers, because the norms of gaussian integers are exactly sums of two squares. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem4 (𝐴𝑆 ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑣,𝑛,𝐴,𝑢   𝑆,𝑛,𝑢,𝑣   𝑢,𝐴
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem4
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
214sqlem2 16987 . . 3 (𝐴𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
3 gzreim 16977 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + (i · 𝑏)) ∈ ℤ[i])
43adantr 480 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝑎 + (i · 𝑏)) ∈ ℤ[i])
5 gzreim 16977 . . . . . . . 8 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (𝑐 + (i · 𝑑)) ∈ ℤ[i])
65adantl 481 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝑐 + (i · 𝑑)) ∈ ℤ[i])
7 gzcn 16970 . . . . . . . . . . . 12 ((𝑎 + (i · 𝑏)) ∈ ℤ[i] → (𝑎 + (i · 𝑏)) ∈ ℂ)
83, 7syl 17 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
98absvalsq2d 15482 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((abs‘(𝑎 + (i · 𝑏)))↑2) = (((ℜ‘(𝑎 + (i · 𝑏)))↑2) + ((ℑ‘(𝑎 + (i · 𝑏)))↑2)))
10 zre 12617 . . . . . . . . . . . . 13 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
11 zre 12617 . . . . . . . . . . . . 13 (𝑏 ∈ ℤ → 𝑏 ∈ ℝ)
12 crre 15153 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (ℜ‘(𝑎 + (i · 𝑏))) = 𝑎)
1310, 11, 12syl2an 596 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (ℜ‘(𝑎 + (i · 𝑏))) = 𝑎)
1413oveq1d 7446 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((ℜ‘(𝑎 + (i · 𝑏)))↑2) = (𝑎↑2))
15 crim 15154 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (ℑ‘(𝑎 + (i · 𝑏))) = 𝑏)
1610, 11, 15syl2an 596 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (ℑ‘(𝑎 + (i · 𝑏))) = 𝑏)
1716oveq1d 7446 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((ℑ‘(𝑎 + (i · 𝑏)))↑2) = (𝑏↑2))
1814, 17oveq12d 7449 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (((ℜ‘(𝑎 + (i · 𝑏)))↑2) + ((ℑ‘(𝑎 + (i · 𝑏)))↑2)) = ((𝑎↑2) + (𝑏↑2)))
199, 18eqtrd 2777 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((abs‘(𝑎 + (i · 𝑏)))↑2) = ((𝑎↑2) + (𝑏↑2)))
20 gzcn 16970 . . . . . . . . . . . 12 ((𝑐 + (i · 𝑑)) ∈ ℤ[i] → (𝑐 + (i · 𝑑)) ∈ ℂ)
215, 20syl 17 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (𝑐 + (i · 𝑑)) ∈ ℂ)
2221absvalsq2d 15482 . . . . . . . . . 10 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((abs‘(𝑐 + (i · 𝑑)))↑2) = (((ℜ‘(𝑐 + (i · 𝑑)))↑2) + ((ℑ‘(𝑐 + (i · 𝑑)))↑2)))
23 zre 12617 . . . . . . . . . . . . 13 (𝑐 ∈ ℤ → 𝑐 ∈ ℝ)
24 zre 12617 . . . . . . . . . . . . 13 (𝑑 ∈ ℤ → 𝑑 ∈ ℝ)
25 crre 15153 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (ℜ‘(𝑐 + (i · 𝑑))) = 𝑐)
2623, 24, 25syl2an 596 . . . . . . . . . . . 12 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (ℜ‘(𝑐 + (i · 𝑑))) = 𝑐)
2726oveq1d 7446 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((ℜ‘(𝑐 + (i · 𝑑)))↑2) = (𝑐↑2))
28 crim 15154 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (ℑ‘(𝑐 + (i · 𝑑))) = 𝑑)
2923, 24, 28syl2an 596 . . . . . . . . . . . 12 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (ℑ‘(𝑐 + (i · 𝑑))) = 𝑑)
3029oveq1d 7446 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((ℑ‘(𝑐 + (i · 𝑑)))↑2) = (𝑑↑2))
3127, 30oveq12d 7449 . . . . . . . . . 10 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (((ℜ‘(𝑐 + (i · 𝑑)))↑2) + ((ℑ‘(𝑐 + (i · 𝑑)))↑2)) = ((𝑐↑2) + (𝑑↑2)))
3222, 31eqtrd 2777 . . . . . . . . 9 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((abs‘(𝑐 + (i · 𝑑)))↑2) = ((𝑐↑2) + (𝑑↑2)))
3319, 32oveqan12d 7450 . . . . . . . 8 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2)) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
3433eqcomd 2743 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2)))
35 fveq2 6906 . . . . . . . . . . 11 (𝑢 = (𝑎 + (i · 𝑏)) → (abs‘𝑢) = (abs‘(𝑎 + (i · 𝑏))))
3635oveq1d 7446 . . . . . . . . . 10 (𝑢 = (𝑎 + (i · 𝑏)) → ((abs‘𝑢)↑2) = ((abs‘(𝑎 + (i · 𝑏)))↑2))
3736oveq1d 7446 . . . . . . . . 9 (𝑢 = (𝑎 + (i · 𝑏)) → (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2)))
3837eqeq2d 2748 . . . . . . . 8 (𝑢 = (𝑎 + (i · 𝑏)) → ((((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ↔ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2))))
39 fveq2 6906 . . . . . . . . . . 11 (𝑣 = (𝑐 + (i · 𝑑)) → (abs‘𝑣) = (abs‘(𝑐 + (i · 𝑑))))
4039oveq1d 7446 . . . . . . . . . 10 (𝑣 = (𝑐 + (i · 𝑑)) → ((abs‘𝑣)↑2) = ((abs‘(𝑐 + (i · 𝑑)))↑2))
4140oveq2d 7447 . . . . . . . . 9 (𝑣 = (𝑐 + (i · 𝑑)) → (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2)) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2)))
4241eqeq2d 2748 . . . . . . . 8 (𝑣 = (𝑐 + (i · 𝑑)) → ((((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2)) ↔ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2))))
4338, 42rspc2ev 3635 . . . . . . 7 (((𝑎 + (i · 𝑏)) ∈ ℤ[i] ∧ (𝑐 + (i · 𝑑)) ∈ ℤ[i] ∧ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
444, 6, 34, 43syl3anc 1373 . . . . . 6 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
45 eqeq1 2741 . . . . . . 7 (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → (𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ↔ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
46452rexbidv 3222 . . . . . 6 (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → (∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
4744, 46syl5ibrcom 247 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
4847rexlimdvva 3213 . . . 4 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
4948rexlimivv 3201 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
502, 49sylbi 217 . 2 (𝐴𝑆 → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
5114sqlem4a 16989 . . . 4 ((𝑢 ∈ ℤ[i] ∧ 𝑣 ∈ ℤ[i]) → (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ∈ 𝑆)
52 eleq1a 2836 . . . 4 ((((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ∈ 𝑆 → (𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) → 𝐴𝑆))
5351, 52syl 17 . . 3 ((𝑢 ∈ ℤ[i] ∧ 𝑣 ∈ ℤ[i]) → (𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) → 𝐴𝑆))
5453rexlimivv 3201 . 2 (∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) → 𝐴𝑆)
5550, 54impbii 209 1 (𝐴𝑆 ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2714  wrex 3070  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  ici 11157   + caddc 11158   · cmul 11160  2c2 12321  cz 12613  cexp 14102  cre 15136  cim 15137  abscabs 15273  ℤ[i]cgz 16967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-gz 16968
This theorem is referenced by:  mul4sq  16992
  Copyright terms: Public domain W3C validator