MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem4 Structured version   Visualization version   GIF version

Theorem 4sqlem4 15937
Description: Lemma for 4sq 15949. We can express the four-square property more compactly in terms of gaussian integers, because the norms of gaussian integers are exactly sums of two squares. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem4 (𝐴𝑆 ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑣,𝑛,𝐴,𝑢   𝑆,𝑛,𝑢,𝑣   𝑢,𝐴
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem4
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
214sqlem2 15934 . . 3 (𝐴𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
3 gzreim 15924 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + (i · 𝑏)) ∈ ℤ[i])
43adantr 472 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝑎 + (i · 𝑏)) ∈ ℤ[i])
5 gzreim 15924 . . . . . . . 8 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (𝑐 + (i · 𝑑)) ∈ ℤ[i])
65adantl 473 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝑐 + (i · 𝑑)) ∈ ℤ[i])
7 gzcn 15917 . . . . . . . . . . . 12 ((𝑎 + (i · 𝑏)) ∈ ℤ[i] → (𝑎 + (i · 𝑏)) ∈ ℂ)
83, 7syl 17 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
98absvalsq2d 14469 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((abs‘(𝑎 + (i · 𝑏)))↑2) = (((ℜ‘(𝑎 + (i · 𝑏)))↑2) + ((ℑ‘(𝑎 + (i · 𝑏)))↑2)))
10 zre 11628 . . . . . . . . . . . . 13 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
11 zre 11628 . . . . . . . . . . . . 13 (𝑏 ∈ ℤ → 𝑏 ∈ ℝ)
12 crre 14141 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (ℜ‘(𝑎 + (i · 𝑏))) = 𝑎)
1310, 11, 12syl2an 589 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (ℜ‘(𝑎 + (i · 𝑏))) = 𝑎)
1413oveq1d 6857 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((ℜ‘(𝑎 + (i · 𝑏)))↑2) = (𝑎↑2))
15 crim 14142 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (ℑ‘(𝑎 + (i · 𝑏))) = 𝑏)
1610, 11, 15syl2an 589 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (ℑ‘(𝑎 + (i · 𝑏))) = 𝑏)
1716oveq1d 6857 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((ℑ‘(𝑎 + (i · 𝑏)))↑2) = (𝑏↑2))
1814, 17oveq12d 6860 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (((ℜ‘(𝑎 + (i · 𝑏)))↑2) + ((ℑ‘(𝑎 + (i · 𝑏)))↑2)) = ((𝑎↑2) + (𝑏↑2)))
199, 18eqtrd 2799 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((abs‘(𝑎 + (i · 𝑏)))↑2) = ((𝑎↑2) + (𝑏↑2)))
20 gzcn 15917 . . . . . . . . . . . 12 ((𝑐 + (i · 𝑑)) ∈ ℤ[i] → (𝑐 + (i · 𝑑)) ∈ ℂ)
215, 20syl 17 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (𝑐 + (i · 𝑑)) ∈ ℂ)
2221absvalsq2d 14469 . . . . . . . . . 10 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((abs‘(𝑐 + (i · 𝑑)))↑2) = (((ℜ‘(𝑐 + (i · 𝑑)))↑2) + ((ℑ‘(𝑐 + (i · 𝑑)))↑2)))
23 zre 11628 . . . . . . . . . . . . 13 (𝑐 ∈ ℤ → 𝑐 ∈ ℝ)
24 zre 11628 . . . . . . . . . . . . 13 (𝑑 ∈ ℤ → 𝑑 ∈ ℝ)
25 crre 14141 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (ℜ‘(𝑐 + (i · 𝑑))) = 𝑐)
2623, 24, 25syl2an 589 . . . . . . . . . . . 12 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (ℜ‘(𝑐 + (i · 𝑑))) = 𝑐)
2726oveq1d 6857 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((ℜ‘(𝑐 + (i · 𝑑)))↑2) = (𝑐↑2))
28 crim 14142 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (ℑ‘(𝑐 + (i · 𝑑))) = 𝑑)
2923, 24, 28syl2an 589 . . . . . . . . . . . 12 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (ℑ‘(𝑐 + (i · 𝑑))) = 𝑑)
3029oveq1d 6857 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((ℑ‘(𝑐 + (i · 𝑑)))↑2) = (𝑑↑2))
3127, 30oveq12d 6860 . . . . . . . . . 10 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (((ℜ‘(𝑐 + (i · 𝑑)))↑2) + ((ℑ‘(𝑐 + (i · 𝑑)))↑2)) = ((𝑐↑2) + (𝑑↑2)))
3222, 31eqtrd 2799 . . . . . . . . 9 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((abs‘(𝑐 + (i · 𝑑)))↑2) = ((𝑐↑2) + (𝑑↑2)))
3319, 32oveqan12d 6861 . . . . . . . 8 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2)) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
3433eqcomd 2771 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2)))
35 fveq2 6375 . . . . . . . . . . 11 (𝑢 = (𝑎 + (i · 𝑏)) → (abs‘𝑢) = (abs‘(𝑎 + (i · 𝑏))))
3635oveq1d 6857 . . . . . . . . . 10 (𝑢 = (𝑎 + (i · 𝑏)) → ((abs‘𝑢)↑2) = ((abs‘(𝑎 + (i · 𝑏)))↑2))
3736oveq1d 6857 . . . . . . . . 9 (𝑢 = (𝑎 + (i · 𝑏)) → (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2)))
3837eqeq2d 2775 . . . . . . . 8 (𝑢 = (𝑎 + (i · 𝑏)) → ((((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ↔ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2))))
39 fveq2 6375 . . . . . . . . . . 11 (𝑣 = (𝑐 + (i · 𝑑)) → (abs‘𝑣) = (abs‘(𝑐 + (i · 𝑑))))
4039oveq1d 6857 . . . . . . . . . 10 (𝑣 = (𝑐 + (i · 𝑑)) → ((abs‘𝑣)↑2) = ((abs‘(𝑐 + (i · 𝑑)))↑2))
4140oveq2d 6858 . . . . . . . . 9 (𝑣 = (𝑐 + (i · 𝑑)) → (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2)) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2)))
4241eqeq2d 2775 . . . . . . . 8 (𝑣 = (𝑐 + (i · 𝑑)) → ((((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2)) ↔ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2))))
4338, 42rspc2ev 3476 . . . . . . 7 (((𝑎 + (i · 𝑏)) ∈ ℤ[i] ∧ (𝑐 + (i · 𝑑)) ∈ ℤ[i] ∧ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
444, 6, 34, 43syl3anc 1490 . . . . . 6 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
45 eqeq1 2769 . . . . . . 7 (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → (𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ↔ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
46452rexbidv 3204 . . . . . 6 (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → (∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
4744, 46syl5ibrcom 238 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
4847rexlimdvva 3185 . . . 4 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
4948rexlimivv 3183 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
502, 49sylbi 208 . 2 (𝐴𝑆 → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
5114sqlem4a 15936 . . . 4 ((𝑢 ∈ ℤ[i] ∧ 𝑣 ∈ ℤ[i]) → (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ∈ 𝑆)
52 eleq1a 2839 . . . 4 ((((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ∈ 𝑆 → (𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) → 𝐴𝑆))
5351, 52syl 17 . . 3 ((𝑢 ∈ ℤ[i] ∧ 𝑣 ∈ ℤ[i]) → (𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) → 𝐴𝑆))
5453rexlimivv 3183 . 2 (∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) → 𝐴𝑆)
5550, 54impbii 200 1 (𝐴𝑆 ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  {cab 2751  wrex 3056  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  ici 10191   + caddc 10192   · cmul 10194  2c2 11327  cz 11624  cexp 13067  cre 14124  cim 14125  abscabs 14261  ℤ[i]cgz 15914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-seq 13009  df-exp 13068  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-gz 15915
This theorem is referenced by:  mul4sq  15939
  Copyright terms: Public domain W3C validator