MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul4sq Structured version   Visualization version   GIF version

Theorem mul4sq 16942
Description: Euler's four-square identity: The product of two sums of four squares is also a sum of four squares. This is usually quoted as an explicit formula involving eight real variables; we save some time by working with complex numbers (gaussian integers) instead, so that we only have to work with four variables, and also hiding the actual formula for the product in the proof of mul4sqlem 16941. (For the curious, the explicit formula that is used is ( ∣ 𝑎 ∣ ↑2 + ∣ 𝑏 ∣ ↑2)( ∣ 𝑐 ∣ ↑2 + ∣ 𝑑 ∣ ↑2) = 𝑎∗ · 𝑐 + 𝑏 · 𝑑∗ ∣ ↑2 + ∣ 𝑎∗ · 𝑑𝑏 · 𝑐∗ ∣ ↑2.) (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
mul4sq ((𝐴𝑆𝐵𝑆) → (𝐴 · 𝐵) ∈ 𝑆)
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛   𝐴,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem mul4sq
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . 3 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
214sqlem4 16940 . 2 (𝐴𝑆 ↔ ∃𝑎 ∈ ℤ[i] ∃𝑏 ∈ ℤ[i] 𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)))
314sqlem4 16940 . 2 (𝐵𝑆 ↔ ∃𝑐 ∈ ℤ[i] ∃𝑑 ∈ ℤ[i] 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)))
4 reeanv 3216 . . 3 (∃𝑎 ∈ ℤ[i] ∃𝑐 ∈ ℤ[i] (∃𝑏 ∈ ℤ[i] 𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ ∃𝑑 ∈ ℤ[i] 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) ↔ (∃𝑎 ∈ ℤ[i] ∃𝑏 ∈ ℤ[i] 𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ ∃𝑐 ∈ ℤ[i] ∃𝑑 ∈ ℤ[i] 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))))
5 reeanv 3216 . . . . 5 (∃𝑏 ∈ ℤ[i] ∃𝑑 ∈ ℤ[i] (𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) ↔ (∃𝑏 ∈ ℤ[i] 𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ ∃𝑑 ∈ ℤ[i] 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))))
6 simpll 765 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → 𝑎 ∈ ℤ[i])
7 gzabssqcl 16929 . . . . . . . . . . . . 13 (𝑎 ∈ ℤ[i] → ((abs‘𝑎)↑2) ∈ ℕ0)
86, 7syl 17 . . . . . . . . . . . 12 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → ((abs‘𝑎)↑2) ∈ ℕ0)
9 simprl 769 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → 𝑏 ∈ ℤ[i])
10 gzabssqcl 16929 . . . . . . . . . . . . 13 (𝑏 ∈ ℤ[i] → ((abs‘𝑏)↑2) ∈ ℕ0)
119, 10syl 17 . . . . . . . . . . . 12 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → ((abs‘𝑏)↑2) ∈ ℕ0)
128, 11nn0addcld 12574 . . . . . . . . . . 11 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∈ ℕ0)
1312nn0cnd 12572 . . . . . . . . . 10 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∈ ℂ)
1413div1d 12020 . . . . . . . . 9 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → ((((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) / 1) = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)))
15 simplr 767 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → 𝑐 ∈ ℤ[i])
16 gzabssqcl 16929 . . . . . . . . . . . . 13 (𝑐 ∈ ℤ[i] → ((abs‘𝑐)↑2) ∈ ℕ0)
1715, 16syl 17 . . . . . . . . . . . 12 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → ((abs‘𝑐)↑2) ∈ ℕ0)
18 simprr 771 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → 𝑑 ∈ ℤ[i])
19 gzabssqcl 16929 . . . . . . . . . . . . 13 (𝑑 ∈ ℤ[i] → ((abs‘𝑑)↑2) ∈ ℕ0)
2018, 19syl 17 . . . . . . . . . . . 12 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → ((abs‘𝑑)↑2) ∈ ℕ0)
2117, 20nn0addcld 12574 . . . . . . . . . . 11 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)) ∈ ℕ0)
2221nn0cnd 12572 . . . . . . . . . 10 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)) ∈ ℂ)
2322div1d 12020 . . . . . . . . 9 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → ((((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)) / 1) = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)))
2414, 23oveq12d 7437 . . . . . . . 8 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → (((((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) / 1) · ((((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)) / 1)) = ((((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) · (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))))
25 eqid 2725 . . . . . . . . 9 (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2))
26 eqid 2725 . . . . . . . . 9 (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)) = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))
27 1nn 12261 . . . . . . . . . 10 1 ∈ ℕ
2827a1i 11 . . . . . . . . 9 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → 1 ∈ ℕ)
29 gzsubcl 16928 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) → (𝑎𝑐) ∈ ℤ[i])
3029adantr 479 . . . . . . . . . . . 12 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → (𝑎𝑐) ∈ ℤ[i])
31 gzcn 16920 . . . . . . . . . . . 12 ((𝑎𝑐) ∈ ℤ[i] → (𝑎𝑐) ∈ ℂ)
3230, 31syl 17 . . . . . . . . . . 11 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → (𝑎𝑐) ∈ ℂ)
3332div1d 12020 . . . . . . . . . 10 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → ((𝑎𝑐) / 1) = (𝑎𝑐))
3433, 30eqeltrd 2825 . . . . . . . . 9 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → ((𝑎𝑐) / 1) ∈ ℤ[i])
35 gzsubcl 16928 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i]) → (𝑏𝑑) ∈ ℤ[i])
3635adantl 480 . . . . . . . . . . . 12 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → (𝑏𝑑) ∈ ℤ[i])
37 gzcn 16920 . . . . . . . . . . . 12 ((𝑏𝑑) ∈ ℤ[i] → (𝑏𝑑) ∈ ℂ)
3836, 37syl 17 . . . . . . . . . . 11 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → (𝑏𝑑) ∈ ℂ)
3938div1d 12020 . . . . . . . . . 10 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → ((𝑏𝑑) / 1) = (𝑏𝑑))
4039, 36eqeltrd 2825 . . . . . . . . 9 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → ((𝑏𝑑) / 1) ∈ ℤ[i])
4114, 12eqeltrd 2825 . . . . . . . . 9 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → ((((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) / 1) ∈ ℕ0)
421, 6, 9, 15, 18, 25, 26, 28, 34, 40, 41mul4sqlem 16941 . . . . . . . 8 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → (((((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) / 1) · ((((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)) / 1)) ∈ 𝑆)
4324, 42eqeltrrd 2826 . . . . . . 7 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → ((((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) · (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) ∈ 𝑆)
44 oveq12 7428 . . . . . . . 8 ((𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → (𝐴 · 𝐵) = ((((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) · (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))))
4544eleq1d 2810 . . . . . . 7 ((𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → ((𝐴 · 𝐵) ∈ 𝑆 ↔ ((((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) · (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) ∈ 𝑆))
4643, 45syl5ibrcom 246 . . . . . 6 (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → ((𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → (𝐴 · 𝐵) ∈ 𝑆))
4746rexlimdvva 3201 . . . . 5 ((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) → (∃𝑏 ∈ ℤ[i] ∃𝑑 ∈ ℤ[i] (𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → (𝐴 · 𝐵) ∈ 𝑆))
485, 47biimtrrid 242 . . . 4 ((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) → ((∃𝑏 ∈ ℤ[i] 𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ ∃𝑑 ∈ ℤ[i] 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → (𝐴 · 𝐵) ∈ 𝑆))
4948rexlimivv 3189 . . 3 (∃𝑎 ∈ ℤ[i] ∃𝑐 ∈ ℤ[i] (∃𝑏 ∈ ℤ[i] 𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ ∃𝑑 ∈ ℤ[i] 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → (𝐴 · 𝐵) ∈ 𝑆)
504, 49sylbir 234 . 2 ((∃𝑎 ∈ ℤ[i] ∃𝑏 ∈ ℤ[i] 𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ ∃𝑐 ∈ ℤ[i] ∃𝑑 ∈ ℤ[i] 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → (𝐴 · 𝐵) ∈ 𝑆)
512, 3, 50syl2anb 596 1 ((𝐴𝑆𝐵𝑆) → (𝐴 · 𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {cab 2702  wrex 3059  cfv 6549  (class class class)co 7419  cc 11143  1c1 11146   + caddc 11148   · cmul 11150  cmin 11481   / cdiv 11908  cn 12250  2c2 12305  0cn0 12510  cz 12596  cexp 14067  abscabs 15225  ℤ[i]cgz 16917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9472  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-seq 14008  df-exp 14068  df-cj 15090  df-re 15091  df-im 15092  df-sqrt 15226  df-abs 15227  df-gz 16918
This theorem is referenced by:  4sqlem19  16951
  Copyright terms: Public domain W3C validator