| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmetmet | Structured version Visualization version GIF version | ||
| Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.) |
| Ref | Expression |
|---|---|
| cmetmet | ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 2 | 1 | iscmet 25184 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 Metcmet 21250 MetOpencmopn 21254 fLim cflim 23821 CauFilccfil 25152 CMetccmet 25154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-cmet 25157 |
| This theorem is referenced by: cmetmeti 25187 cmetcaulem 25188 cmetcau 25189 iscmet2 25194 metsscmetcld 25215 cmetss 25216 bcthlem2 25225 bcthlem3 25226 bcthlem4 25227 bcthlem5 25228 bcth2 25230 bcth3 25231 cmetcusp1 25253 cmetcusp 25254 minveclem3 25329 ubthlem1 30799 ubthlem2 30800 hlmet 30824 fmcncfil 33921 heiborlem3 37807 heiborlem6 37810 heiborlem8 37812 heiborlem9 37813 heiborlem10 37814 heibor 37815 bfplem1 37816 bfplem2 37817 bfp 37818 |
| Copyright terms: Public domain | W3C validator |