| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmetmet | Structured version Visualization version GIF version | ||
| Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.) |
| Ref | Expression |
|---|---|
| cmetmet | ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 2 | 1 | iscmet 25212 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∅c0 4283 ‘cfv 6481 (class class class)co 7346 Metcmet 21278 MetOpencmopn 21282 fLim cflim 23850 CauFilccfil 25180 CMetccmet 25182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-cmet 25185 |
| This theorem is referenced by: cmetmeti 25215 cmetcaulem 25216 cmetcau 25217 iscmet2 25222 metsscmetcld 25243 cmetss 25244 bcthlem2 25253 bcthlem3 25254 bcthlem4 25255 bcthlem5 25256 bcth2 25258 bcth3 25259 cmetcusp1 25281 cmetcusp 25282 minveclem3 25357 ubthlem1 30848 ubthlem2 30849 hlmet 30873 fmcncfil 33942 heiborlem3 37859 heiborlem6 37862 heiborlem8 37864 heiborlem9 37865 heiborlem10 37866 heibor 37867 bfplem1 37868 bfplem2 37869 bfp 37870 |
| Copyright terms: Public domain | W3C validator |