![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmetmet | Structured version Visualization version GIF version |
Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
cmetmet | ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
2 | 1 | iscmet 25331 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 ∅c0 4338 ‘cfv 6562 (class class class)co 7430 Metcmet 21367 MetOpencmopn 21371 fLim cflim 23957 CauFilccfil 25299 CMetccmet 25301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-ov 7433 df-cmet 25304 |
This theorem is referenced by: cmetmeti 25334 cmetcaulem 25335 cmetcau 25336 iscmet2 25341 metsscmetcld 25362 cmetss 25363 bcthlem2 25372 bcthlem3 25373 bcthlem4 25374 bcthlem5 25375 bcth2 25377 bcth3 25378 cmetcusp1 25400 cmetcusp 25401 minveclem3 25476 ubthlem1 30898 ubthlem2 30899 hlmet 30923 fmcncfil 33891 heiborlem3 37799 heiborlem6 37802 heiborlem8 37804 heiborlem9 37805 heiborlem10 37806 heibor 37807 bfplem1 37808 bfplem2 37809 bfp 37810 |
Copyright terms: Public domain | W3C validator |