MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetmet Structured version   Visualization version   GIF version

Theorem cmetmet 24355
Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
cmetmet (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))

Proof of Theorem cmetmet
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (MetOpen‘𝐷) = (MetOpen‘𝐷)
21iscmet 24353 . 2 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))
32simplbi 497 1 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2942  wral 3063  c0 4253  cfv 6418  (class class class)co 7255  Metcmet 20496  MetOpencmopn 20500   fLim cflim 22993  CauFilccfil 24321  CMetccmet 24323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-cmet 24326
This theorem is referenced by:  cmetmeti  24356  cmetcaulem  24357  cmetcau  24358  iscmet2  24363  metsscmetcld  24384  cmetss  24385  bcthlem2  24394  bcthlem3  24395  bcthlem4  24396  bcthlem5  24397  bcth2  24399  bcth3  24400  cmetcusp1  24422  cmetcusp  24423  minveclem3  24498  ubthlem1  29133  ubthlem2  29134  hlmet  29158  fmcncfil  31783  heiborlem3  35898  heiborlem6  35901  heiborlem8  35903  heiborlem9  35904  heiborlem10  35905  heibor  35906  bfplem1  35907  bfplem2  35908  bfp  35909
  Copyright terms: Public domain W3C validator