![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmetmet | Structured version Visualization version GIF version |
Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
cmetmet | ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
2 | 1 | iscmet 25337 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 Metcmet 21373 MetOpencmopn 21377 fLim cflim 23963 CauFilccfil 25305 CMetccmet 25307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-cmet 25310 |
This theorem is referenced by: cmetmeti 25340 cmetcaulem 25341 cmetcau 25342 iscmet2 25347 metsscmetcld 25368 cmetss 25369 bcthlem2 25378 bcthlem3 25379 bcthlem4 25380 bcthlem5 25381 bcth2 25383 bcth3 25384 cmetcusp1 25406 cmetcusp 25407 minveclem3 25482 ubthlem1 30902 ubthlem2 30903 hlmet 30927 fmcncfil 33877 heiborlem3 37773 heiborlem6 37776 heiborlem8 37778 heiborlem9 37779 heiborlem10 37780 heibor 37781 bfplem1 37782 bfplem2 37783 bfp 37784 |
Copyright terms: Public domain | W3C validator |