![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmetmet | Structured version Visualization version GIF version |
Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
cmetmet | ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . 3 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
2 | 1 | iscmet 23452 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
3 | 2 | simplbi 493 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2166 ≠ wne 2999 ∀wral 3117 ∅c0 4144 ‘cfv 6123 (class class class)co 6905 Metcmet 20092 MetOpencmopn 20096 fLim cflim 22108 CauFilccfil 23420 CMetccmet 23422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-iota 6086 df-fun 6125 df-fv 6131 df-ov 6908 df-cmet 23425 |
This theorem is referenced by: cmetmeti 23455 cmetcaulem 23456 cmetcau 23457 iscmet2 23462 metsscmetcld 23483 cmetss 23484 bcthlem2 23493 bcthlem3 23494 bcthlem4 23495 bcthlem5 23496 bcth2 23498 bcth3 23499 cmetcusp1 23521 cmetcusp 23522 minveclem3 23597 ubthlem1 28281 ubthlem2 28282 hlmet 28306 fmcncfil 30522 heiborlem3 34154 heiborlem6 34157 heiborlem8 34159 heiborlem9 34160 heiborlem10 34161 heibor 34162 bfplem1 34163 bfplem2 34164 bfp 34165 |
Copyright terms: Public domain | W3C validator |