Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmetmet | Structured version Visualization version GIF version |
Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
cmetmet | ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
2 | 1 | iscmet 24353 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 Metcmet 20496 MetOpencmopn 20500 fLim cflim 22993 CauFilccfil 24321 CMetccmet 24323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-cmet 24326 |
This theorem is referenced by: cmetmeti 24356 cmetcaulem 24357 cmetcau 24358 iscmet2 24363 metsscmetcld 24384 cmetss 24385 bcthlem2 24394 bcthlem3 24395 bcthlem4 24396 bcthlem5 24397 bcth2 24399 bcth3 24400 cmetcusp1 24422 cmetcusp 24423 minveclem3 24498 ubthlem1 29133 ubthlem2 29134 hlmet 29158 fmcncfil 31783 heiborlem3 35898 heiborlem6 35901 heiborlem8 35903 heiborlem9 35904 heiborlem10 35905 heibor 35906 bfplem1 35907 bfplem2 35908 bfp 35909 |
Copyright terms: Public domain | W3C validator |