MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetmet Structured version   Visualization version   GIF version

Theorem cmetmet 25339
Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
cmetmet (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))

Proof of Theorem cmetmet
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (MetOpen‘𝐷) = (MetOpen‘𝐷)
21iscmet 25337 . 2 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))
32simplbi 497 1 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2946  wral 3067  c0 4352  cfv 6573  (class class class)co 7448  Metcmet 21373  MetOpencmopn 21377   fLim cflim 23963  CauFilccfil 25305  CMetccmet 25307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-cmet 25310
This theorem is referenced by:  cmetmeti  25340  cmetcaulem  25341  cmetcau  25342  iscmet2  25347  metsscmetcld  25368  cmetss  25369  bcthlem2  25378  bcthlem3  25379  bcthlem4  25380  bcthlem5  25381  bcth2  25383  bcth3  25384  cmetcusp1  25406  cmetcusp  25407  minveclem3  25482  ubthlem1  30902  ubthlem2  30903  hlmet  30927  fmcncfil  33877  heiborlem3  37773  heiborlem6  37776  heiborlem8  37778  heiborlem9  37779  heiborlem10  37780  heibor  37781  bfplem1  37782  bfplem2  37783  bfp  37784
  Copyright terms: Public domain W3C validator