| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmetmet | Structured version Visualization version GIF version | ||
| Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.) |
| Ref | Expression |
|---|---|
| cmetmet | ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 2 | 1 | iscmet 25200 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∅c0 4286 ‘cfv 6486 (class class class)co 7353 Metcmet 21265 MetOpencmopn 21269 fLim cflim 23837 CauFilccfil 25168 CMetccmet 25170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-cmet 25173 |
| This theorem is referenced by: cmetmeti 25203 cmetcaulem 25204 cmetcau 25205 iscmet2 25210 metsscmetcld 25231 cmetss 25232 bcthlem2 25241 bcthlem3 25242 bcthlem4 25243 bcthlem5 25244 bcth2 25246 bcth3 25247 cmetcusp1 25269 cmetcusp 25270 minveclem3 25345 ubthlem1 30832 ubthlem2 30833 hlmet 30857 fmcncfil 33900 heiborlem3 37795 heiborlem6 37798 heiborlem8 37800 heiborlem9 37801 heiborlem10 37802 heibor 37803 bfplem1 37804 bfplem2 37805 bfp 37806 |
| Copyright terms: Public domain | W3C validator |