MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetmet Structured version   Visualization version   GIF version

Theorem cmetmet 23891
Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
cmetmet (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))

Proof of Theorem cmetmet
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . 3 (MetOpen‘𝐷) = (MetOpen‘𝐷)
21iscmet 23889 . 2 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))
32simplbi 500 1 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  wne 3018  wral 3140  c0 4293  cfv 6357  (class class class)co 7158  Metcmet 20533  MetOpencmopn 20537   fLim cflim 22544  CauFilccfil 23857  CMetccmet 23859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-cmet 23862
This theorem is referenced by:  cmetmeti  23892  cmetcaulem  23893  cmetcau  23894  iscmet2  23899  metsscmetcld  23920  cmetss  23921  bcthlem2  23930  bcthlem3  23931  bcthlem4  23932  bcthlem5  23933  bcth2  23935  bcth3  23936  cmetcusp1  23958  cmetcusp  23959  minveclem3  24034  ubthlem1  28649  ubthlem2  28650  hlmet  28674  fmcncfil  31176  heiborlem3  35093  heiborlem6  35096  heiborlem8  35098  heiborlem9  35099  heiborlem10  35100  heibor  35101  bfplem1  35102  bfplem2  35103  bfp  35104
  Copyright terms: Public domain W3C validator