| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmetmet | Structured version Visualization version GIF version | ||
| Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.) |
| Ref | Expression |
|---|---|
| cmetmet | ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 2 | 1 | iscmet 25214 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∅c0 4282 ‘cfv 6488 (class class class)co 7354 Metcmet 21281 MetOpencmopn 21285 fLim cflim 23852 CauFilccfil 25182 CMetccmet 25184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-ov 7357 df-cmet 25187 |
| This theorem is referenced by: cmetmeti 25217 cmetcaulem 25218 cmetcau 25219 iscmet2 25224 metsscmetcld 25245 cmetss 25246 bcthlem2 25255 bcthlem3 25256 bcthlem4 25257 bcthlem5 25258 bcth2 25260 bcth3 25261 cmetcusp1 25283 cmetcusp 25284 minveclem3 25359 ubthlem1 30854 ubthlem2 30855 hlmet 30879 fmcncfil 33967 heiborlem3 37876 heiborlem6 37879 heiborlem8 37881 heiborlem9 37882 heiborlem10 37883 heibor 37884 bfplem1 37885 bfplem2 37886 bfp 37887 |
| Copyright terms: Public domain | W3C validator |