| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmetmet | Structured version Visualization version GIF version | ||
| Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.) |
| Ref | Expression |
|---|---|
| cmetmet | ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 2 | 1 | iscmet 25236 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∅c0 4308 ‘cfv 6531 (class class class)co 7405 Metcmet 21301 MetOpencmopn 21305 fLim cflim 23872 CauFilccfil 25204 CMetccmet 25206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-cmet 25209 |
| This theorem is referenced by: cmetmeti 25239 cmetcaulem 25240 cmetcau 25241 iscmet2 25246 metsscmetcld 25267 cmetss 25268 bcthlem2 25277 bcthlem3 25278 bcthlem4 25279 bcthlem5 25280 bcth2 25282 bcth3 25283 cmetcusp1 25305 cmetcusp 25306 minveclem3 25381 ubthlem1 30851 ubthlem2 30852 hlmet 30876 fmcncfil 33962 heiborlem3 37837 heiborlem6 37840 heiborlem8 37842 heiborlem9 37843 heiborlem10 37844 heibor 37845 bfplem1 37846 bfplem2 37847 bfp 37848 |
| Copyright terms: Public domain | W3C validator |