MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetmet Structured version   Visualization version   GIF version

Theorem cmetmet 25202
Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
cmetmet (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))

Proof of Theorem cmetmet
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (MetOpen‘𝐷) = (MetOpen‘𝐷)
21iscmet 25200 . 2 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))
32simplbi 497 1 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  wral 3044  c0 4286  cfv 6486  (class class class)co 7353  Metcmet 21265  MetOpencmopn 21269   fLim cflim 23837  CauFilccfil 25168  CMetccmet 25170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-cmet 25173
This theorem is referenced by:  cmetmeti  25203  cmetcaulem  25204  cmetcau  25205  iscmet2  25210  metsscmetcld  25231  cmetss  25232  bcthlem2  25241  bcthlem3  25242  bcthlem4  25243  bcthlem5  25244  bcth2  25246  bcth3  25247  cmetcusp1  25269  cmetcusp  25270  minveclem3  25345  ubthlem1  30832  ubthlem2  30833  hlmet  30857  fmcncfil  33900  heiborlem3  37795  heiborlem6  37798  heiborlem8  37800  heiborlem9  37801  heiborlem10  37802  heibor  37803  bfplem1  37804  bfplem2  37805  bfp  37806
  Copyright terms: Public domain W3C validator