MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetmet Structured version   Visualization version   GIF version

Theorem cmetmet 23454
Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
cmetmet (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))

Proof of Theorem cmetmet
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . 3 (MetOpen‘𝐷) = (MetOpen‘𝐷)
21iscmet 23452 . 2 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))
32simplbi 493 1 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2166  wne 2999  wral 3117  c0 4144  cfv 6123  (class class class)co 6905  Metcmet 20092  MetOpencmopn 20096   fLim cflim 22108  CauFilccfil 23420  CMetccmet 23422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-iota 6086  df-fun 6125  df-fv 6131  df-ov 6908  df-cmet 23425
This theorem is referenced by:  cmetmeti  23455  cmetcaulem  23456  cmetcau  23457  iscmet2  23462  metsscmetcld  23483  cmetss  23484  bcthlem2  23493  bcthlem3  23494  bcthlem4  23495  bcthlem5  23496  bcth2  23498  bcth3  23499  cmetcusp1  23521  cmetcusp  23522  minveclem3  23597  ubthlem1  28281  ubthlem2  28282  hlmet  28306  fmcncfil  30522  heiborlem3  34154  heiborlem6  34157  heiborlem8  34159  heiborlem9  34160  heiborlem10  34161  heibor  34162  bfplem1  34163  bfplem2  34164  bfp  34165
  Copyright terms: Public domain W3C validator