| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hocofni | Structured version Visualization version GIF version | ||
| Description: Functionality of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
| hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hocofni | ⊢ (𝑆 ∘ 𝑇) Fn ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoeq.1 | . . 3 ⊢ 𝑆: ℋ⟶ ℋ | |
| 2 | hoeq.2 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
| 3 | 1, 2 | hocofi 31752 | . 2 ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
| 4 | ffn 6711 | . 2 ⊢ ((𝑆 ∘ 𝑇): ℋ⟶ ℋ → (𝑆 ∘ 𝑇) Fn ℋ) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ (𝑆 ∘ 𝑇) Fn ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∘ ccom 5663 Fn wfn 6531 ⟶wf 6532 ℋchba 30905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: pjcofni 32148 pjinvari 32177 pj3si 32193 |
| Copyright terms: Public domain | W3C validator |