| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hocofni | Structured version Visualization version GIF version | ||
| Description: Functionality of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
| hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hocofni | ⊢ (𝑆 ∘ 𝑇) Fn ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoeq.1 | . . 3 ⊢ 𝑆: ℋ⟶ ℋ | |
| 2 | hoeq.2 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
| 3 | 1, 2 | hocofi 31738 | . 2 ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
| 4 | ffn 6646 | . 2 ⊢ ((𝑆 ∘ 𝑇): ℋ⟶ ℋ → (𝑆 ∘ 𝑇) Fn ℋ) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ (𝑆 ∘ 𝑇) Fn ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∘ ccom 5615 Fn wfn 6471 ⟶wf 6472 ℋchba 30891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fun 6478 df-fn 6479 df-f 6480 |
| This theorem is referenced by: pjcofni 32134 pjinvari 32163 pj3si 32179 |
| Copyright terms: Public domain | W3C validator |