|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > pjinvari | Structured version Visualization version GIF version | ||
| Description: A closed subspace 𝐻 with projection 𝑇 is invariant under an operator 𝑆 iff 𝑆𝑇 = 𝑇𝑆𝑇. Theorem 27.1 of [Halmos] p. 45. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| pjinvar.1 | ⊢ 𝑆: ℋ⟶ ℋ | 
| pjinvar.2 | ⊢ 𝐻 ∈ Cℋ | 
| pjinvar.3 | ⊢ 𝑇 = (projℎ‘𝐻) | 
| Ref | Expression | 
|---|---|
| pjinvari | ⊢ ((𝑆 ∘ 𝑇): ℋ⟶𝐻 ↔ (𝑆 ∘ 𝑇) = (𝑇 ∘ (𝑆 ∘ 𝑇))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pjinvar.3 | . . . . . . 7 ⊢ 𝑇 = (projℎ‘𝐻) | |
| 2 | 1 | fveq1i 6906 | . . . . . 6 ⊢ (𝑇‘((𝑆 ∘ 𝑇)‘𝑥)) = ((projℎ‘𝐻)‘((𝑆 ∘ 𝑇)‘𝑥)) | 
| 3 | pjinvar.2 | . . . . . . 7 ⊢ 𝐻 ∈ Cℋ | |
| 4 | ffvelcdm 7100 | . . . . . . 7 ⊢ (((𝑆 ∘ 𝑇): ℋ⟶𝐻 ∧ 𝑥 ∈ ℋ) → ((𝑆 ∘ 𝑇)‘𝑥) ∈ 𝐻) | |
| 5 | pjid 31715 | . . . . . . 7 ⊢ ((𝐻 ∈ Cℋ ∧ ((𝑆 ∘ 𝑇)‘𝑥) ∈ 𝐻) → ((projℎ‘𝐻)‘((𝑆 ∘ 𝑇)‘𝑥)) = ((𝑆 ∘ 𝑇)‘𝑥)) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . . . 6 ⊢ (((𝑆 ∘ 𝑇): ℋ⟶𝐻 ∧ 𝑥 ∈ ℋ) → ((projℎ‘𝐻)‘((𝑆 ∘ 𝑇)‘𝑥)) = ((𝑆 ∘ 𝑇)‘𝑥)) | 
| 7 | 2, 6 | eqtr2id 2789 | . . . . 5 ⊢ (((𝑆 ∘ 𝑇): ℋ⟶𝐻 ∧ 𝑥 ∈ ℋ) → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑇‘((𝑆 ∘ 𝑇)‘𝑥))) | 
| 8 | fvco3 7007 | . . . . 5 ⊢ (((𝑆 ∘ 𝑇): ℋ⟶𝐻 ∧ 𝑥 ∈ ℋ) → ((𝑇 ∘ (𝑆 ∘ 𝑇))‘𝑥) = (𝑇‘((𝑆 ∘ 𝑇)‘𝑥))) | |
| 9 | 7, 8 | eqtr4d 2779 | . . . 4 ⊢ (((𝑆 ∘ 𝑇): ℋ⟶𝐻 ∧ 𝑥 ∈ ℋ) → ((𝑆 ∘ 𝑇)‘𝑥) = ((𝑇 ∘ (𝑆 ∘ 𝑇))‘𝑥)) | 
| 10 | 9 | ralrimiva 3145 | . . 3 ⊢ ((𝑆 ∘ 𝑇): ℋ⟶𝐻 → ∀𝑥 ∈ ℋ ((𝑆 ∘ 𝑇)‘𝑥) = ((𝑇 ∘ (𝑆 ∘ 𝑇))‘𝑥)) | 
| 11 | pjinvar.1 | . . . . 5 ⊢ 𝑆: ℋ⟶ ℋ | |
| 12 | 3 | pjfoi 31723 | . . . . . . . 8 ⊢ (projℎ‘𝐻): ℋ–onto→𝐻 | 
| 13 | fof 6819 | . . . . . . . 8 ⊢ ((projℎ‘𝐻): ℋ–onto→𝐻 → (projℎ‘𝐻): ℋ⟶𝐻) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . . 7 ⊢ (projℎ‘𝐻): ℋ⟶𝐻 | 
| 15 | 1 | feq1i 6726 | . . . . . . 7 ⊢ (𝑇: ℋ⟶𝐻 ↔ (projℎ‘𝐻): ℋ⟶𝐻) | 
| 16 | 14, 15 | mpbir 231 | . . . . . 6 ⊢ 𝑇: ℋ⟶𝐻 | 
| 17 | 3 | chssii 31251 | . . . . . 6 ⊢ 𝐻 ⊆ ℋ | 
| 18 | fss 6751 | . . . . . 6 ⊢ ((𝑇: ℋ⟶𝐻 ∧ 𝐻 ⊆ ℋ) → 𝑇: ℋ⟶ ℋ) | |
| 19 | 16, 17, 18 | mp2an 692 | . . . . 5 ⊢ 𝑇: ℋ⟶ ℋ | 
| 20 | 11, 19 | hocofni 31787 | . . . 4 ⊢ (𝑆 ∘ 𝑇) Fn ℋ | 
| 21 | 11, 19 | hocofi 31786 | . . . . 5 ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ | 
| 22 | 19, 21 | hocofni 31787 | . . . 4 ⊢ (𝑇 ∘ (𝑆 ∘ 𝑇)) Fn ℋ | 
| 23 | eqfnfv 7050 | . . . 4 ⊢ (((𝑆 ∘ 𝑇) Fn ℋ ∧ (𝑇 ∘ (𝑆 ∘ 𝑇)) Fn ℋ) → ((𝑆 ∘ 𝑇) = (𝑇 ∘ (𝑆 ∘ 𝑇)) ↔ ∀𝑥 ∈ ℋ ((𝑆 ∘ 𝑇)‘𝑥) = ((𝑇 ∘ (𝑆 ∘ 𝑇))‘𝑥))) | |
| 24 | 20, 22, 23 | mp2an 692 | . . 3 ⊢ ((𝑆 ∘ 𝑇) = (𝑇 ∘ (𝑆 ∘ 𝑇)) ↔ ∀𝑥 ∈ ℋ ((𝑆 ∘ 𝑇)‘𝑥) = ((𝑇 ∘ (𝑆 ∘ 𝑇))‘𝑥)) | 
| 25 | 10, 24 | sylibr 234 | . 2 ⊢ ((𝑆 ∘ 𝑇): ℋ⟶𝐻 → (𝑆 ∘ 𝑇) = (𝑇 ∘ (𝑆 ∘ 𝑇))) | 
| 26 | fco 6759 | . . . 4 ⊢ ((𝑇: ℋ⟶𝐻 ∧ (𝑆 ∘ 𝑇): ℋ⟶ ℋ) → (𝑇 ∘ (𝑆 ∘ 𝑇)): ℋ⟶𝐻) | |
| 27 | 16, 21, 26 | mp2an 692 | . . 3 ⊢ (𝑇 ∘ (𝑆 ∘ 𝑇)): ℋ⟶𝐻 | 
| 28 | feq1 6715 | . . 3 ⊢ ((𝑆 ∘ 𝑇) = (𝑇 ∘ (𝑆 ∘ 𝑇)) → ((𝑆 ∘ 𝑇): ℋ⟶𝐻 ↔ (𝑇 ∘ (𝑆 ∘ 𝑇)): ℋ⟶𝐻)) | |
| 29 | 27, 28 | mpbiri 258 | . 2 ⊢ ((𝑆 ∘ 𝑇) = (𝑇 ∘ (𝑆 ∘ 𝑇)) → (𝑆 ∘ 𝑇): ℋ⟶𝐻) | 
| 30 | 25, 29 | impbii 209 | 1 ⊢ ((𝑆 ∘ 𝑇): ℋ⟶𝐻 ↔ (𝑆 ∘ 𝑇) = (𝑇 ∘ (𝑆 ∘ 𝑇))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ⊆ wss 3950 ∘ ccom 5688 Fn wfn 6555 ⟶wf 6556 –onto→wfo 6558 ‘cfv 6560 ℋchba 30939 Cℋ cch 30949 projℎcpjh 30957 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cc 10476 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 ax-mulf 11236 ax-hilex 31019 ax-hfvadd 31020 ax-hvcom 31021 ax-hvass 31022 ax-hv0cl 31023 ax-hvaddid 31024 ax-hfvmul 31025 ax-hvmulid 31026 ax-hvmulass 31027 ax-hvdistr1 31028 ax-hvdistr2 31029 ax-hvmul0 31030 ax-hfi 31099 ax-his1 31102 ax-his2 31103 ax-his3 31104 ax-his4 31105 ax-hcompl 31222 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-omul 8512 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-fi 9452 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-acn 9983 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-q 12992 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-ioo 13392 df-ico 13394 df-icc 13395 df-fz 13549 df-fzo 13696 df-fl 13833 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-rlim 15526 df-sum 15724 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-mulg 19087 df-cntz 19336 df-cmn 19801 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-mopn 21361 df-fbas 21362 df-fg 21363 df-cnfld 21366 df-top 22901 df-topon 22918 df-topsp 22940 df-bases 22954 df-cld 23028 df-ntr 23029 df-cls 23030 df-nei 23107 df-cn 23236 df-cnp 23237 df-lm 23238 df-haus 23324 df-tx 23571 df-hmeo 23764 df-fil 23855 df-fm 23947 df-flim 23948 df-flf 23949 df-xms 24331 df-ms 24332 df-tms 24333 df-cfil 25290 df-cau 25291 df-cmet 25292 df-grpo 30513 df-gid 30514 df-ginv 30515 df-gdiv 30516 df-ablo 30565 df-vc 30579 df-nv 30612 df-va 30615 df-ba 30616 df-sm 30617 df-0v 30618 df-vs 30619 df-nmcv 30620 df-ims 30621 df-dip 30721 df-ssp 30742 df-ph 30833 df-cbn 30883 df-hnorm 30988 df-hba 30989 df-hvsub 30991 df-hlim 30992 df-hcau 30993 df-sh 31227 df-ch 31241 df-oc 31272 df-ch0 31273 df-shs 31328 df-pjh 31415 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |