HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocofi Structured version   Visualization version   GIF version

Theorem hocofi 31728
Description: Mapping of composition of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hocofi (𝑆𝑇): ℋ⟶ ℋ

Proof of Theorem hocofi
StepHypRef Expression
1 hoeq.1 . 2 𝑆: ℋ⟶ ℋ
2 hoeq.2 . 2 𝑇: ℋ⟶ ℋ
3 fco 6680 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆𝑇): ℋ⟶ ℋ)
41, 2, 3mp2an 692 1 (𝑆𝑇): ℋ⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:  ccom 5627  wf 6482  chba 30881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  hocofni  31729  hocadddiri  31741  hocsubdiri  31742  ho2coi  31743  ho0coi  31750  hoid1i  31751  hoid1ri  31752  hoddii  31951  lnopcoi  31965  bdopcoi  32060  adjcoi  32062  nmopcoadji  32063  unierri  32066  pjsdii  32117  pjddii  32118  pjsdi2i  32119  pjss1coi  32125  pjss2coi  32126  pjorthcoi  32131  pjinvari  32153  pjclem1  32157  pjclem4  32161  pjadj2coi  32166  pj3lem1  32168  pj3si  32169  pj3cor1i  32171
  Copyright terms: Public domain W3C validator