HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocofi Structured version   Visualization version   GIF version

Theorem hocofi 30029
Description: Mapping of composition of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hocofi (𝑆𝑇): ℋ⟶ ℋ

Proof of Theorem hocofi
StepHypRef Expression
1 hoeq.1 . 2 𝑆: ℋ⟶ ℋ
2 hoeq.2 . 2 𝑇: ℋ⟶ ℋ
3 fco 6608 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆𝑇): ℋ⟶ ℋ)
41, 2, 3mp2an 688 1 (𝑆𝑇): ℋ⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:  ccom 5584  wf 6414  chba 29182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  hocofni  30030  hocadddiri  30042  hocsubdiri  30043  ho2coi  30044  ho0coi  30051  hoid1i  30052  hoid1ri  30053  hoddii  30252  lnopcoi  30266  bdopcoi  30361  adjcoi  30363  nmopcoadji  30364  unierri  30367  pjsdii  30418  pjddii  30419  pjsdi2i  30420  pjss1coi  30426  pjss2coi  30427  pjorthcoi  30432  pjinvari  30454  pjclem1  30458  pjclem4  30462  pjadj2coi  30467  pj3lem1  30469  pj3si  30470  pj3cor1i  30472
  Copyright terms: Public domain W3C validator