| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hocofi | Structured version Visualization version GIF version | ||
| Description: Mapping of composition of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
| hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hocofi | ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoeq.1 | . 2 ⊢ 𝑆: ℋ⟶ ℋ | |
| 2 | hoeq.2 | . 2 ⊢ 𝑇: ℋ⟶ ℋ | |
| 3 | fco 6675 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 ∘ 𝑇): ℋ⟶ ℋ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∘ ccom 5620 ⟶wf 6477 ℋchba 30894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: hocofni 31742 hocadddiri 31754 hocsubdiri 31755 ho2coi 31756 ho0coi 31763 hoid1i 31764 hoid1ri 31765 hoddii 31964 lnopcoi 31978 bdopcoi 32073 adjcoi 32075 nmopcoadji 32076 unierri 32079 pjsdii 32130 pjddii 32131 pjsdi2i 32132 pjss1coi 32138 pjss2coi 32139 pjorthcoi 32144 pjinvari 32166 pjclem1 32170 pjclem4 32174 pjadj2coi 32179 pj3lem1 32181 pj3si 32182 pj3cor1i 32184 |
| Copyright terms: Public domain | W3C validator |