| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hocofi | Structured version Visualization version GIF version | ||
| Description: Mapping of composition of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
| hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hocofi | ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoeq.1 | . 2 ⊢ 𝑆: ℋ⟶ ℋ | |
| 2 | hoeq.2 | . 2 ⊢ 𝑇: ℋ⟶ ℋ | |
| 3 | fco 6730 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 ∘ 𝑇): ℋ⟶ ℋ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∘ ccom 5658 ⟶wf 6527 ℋchba 30900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 |
| This theorem is referenced by: hocofni 31748 hocadddiri 31760 hocsubdiri 31761 ho2coi 31762 ho0coi 31769 hoid1i 31770 hoid1ri 31771 hoddii 31970 lnopcoi 31984 bdopcoi 32079 adjcoi 32081 nmopcoadji 32082 unierri 32085 pjsdii 32136 pjddii 32137 pjsdi2i 32138 pjss1coi 32144 pjss2coi 32145 pjorthcoi 32150 pjinvari 32172 pjclem1 32176 pjclem4 32180 pjadj2coi 32185 pj3lem1 32187 pj3si 32188 pj3cor1i 32190 |
| Copyright terms: Public domain | W3C validator |