![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hocofi | Structured version Visualization version GIF version |
Description: Mapping of composition of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hocofi | ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoeq.1 | . 2 ⊢ 𝑆: ℋ⟶ ℋ | |
2 | hoeq.2 | . 2 ⊢ 𝑇: ℋ⟶ ℋ | |
3 | fco 6294 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 ∘ 𝑇): ℋ⟶ ℋ) | |
4 | 1, 2, 3 | mp2an 685 | 1 ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∘ ccom 5345 ⟶wf 6118 ℋchba 28330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-br 4873 df-opab 4935 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-fun 6124 df-fn 6125 df-f 6126 |
This theorem is referenced by: hocofni 29180 hocadddiri 29192 hocsubdiri 29193 ho2coi 29194 ho0coi 29201 hoid1i 29202 hoid1ri 29203 hoddii 29402 lnopcoi 29416 bdopcoi 29511 adjcoi 29513 nmopcoadji 29514 unierri 29517 pjsdii 29568 pjddii 29569 pjsdi2i 29570 pjss1coi 29576 pjss2coi 29577 pjorthcoi 29582 pjinvari 29604 pjclem1 29608 pjclem4 29612 pjadj2coi 29617 pj3lem1 29619 pj3si 29620 pj3cor1i 29622 |
Copyright terms: Public domain | W3C validator |