HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoaddcli Structured version   Visualization version   GIF version

Theorem hoaddcli 31704
Description: Mapping of sum of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoaddcli (𝑆 +op 𝑇): ℋ⟶ ℋ

Proof of Theorem hoaddcli
StepHypRef Expression
1 hoeq.1 . 2 𝑆: ℋ⟶ ℋ
2 hoeq.2 . 2 𝑇: ℋ⟶ ℋ
3 hoaddcl 31694 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇): ℋ⟶ ℋ)
41, 2, 3mp2an 692 1 (𝑆 +op 𝑇): ℋ⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:  wf 6515  (class class class)co 7394  chba 30855   +op chos 30874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-hilex 30935  ax-hfvadd 30936
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-map 8805  df-hosum 31666
This theorem is referenced by:  hoaddfni  31706  hoaddcomi  31708  hodsi  31711  hoaddassi  31712  hocadddiri  31715  hoaddridi  31722  ho0subi  31731  honegsubi  31732  hosd1i  31758  lnophsi  31937  nmoptrii  32030  bdophsi  32032  nmoptri2i  32035  pjsdii  32091  pjscji  32106  pjtoi  32115
  Copyright terms: Public domain W3C validator