HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoaddcli Structured version   Visualization version   GIF version

Theorem hoaddcli 31800
Description: Mapping of sum of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoaddcli (𝑆 +op 𝑇): ℋ⟶ ℋ

Proof of Theorem hoaddcli
StepHypRef Expression
1 hoeq.1 . 2 𝑆: ℋ⟶ ℋ
2 hoeq.2 . 2 𝑇: ℋ⟶ ℋ
3 hoaddcl 31790 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇): ℋ⟶ ℋ)
41, 2, 3mp2an 691 1 (𝑆 +op 𝑇): ℋ⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:  wf 6569  (class class class)co 7448  chba 30951   +op chos 30970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-hilex 31031  ax-hfvadd 31032
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-hosum 31762
This theorem is referenced by:  hoaddfni  31802  hoaddcomi  31804  hodsi  31807  hoaddassi  31808  hocadddiri  31811  hoaddridi  31818  ho0subi  31827  honegsubi  31828  hosd1i  31854  lnophsi  32033  nmoptrii  32126  bdophsi  32128  nmoptri2i  32131  pjsdii  32187  pjscji  32202  pjtoi  32211
  Copyright terms: Public domain W3C validator