Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > crngringd | Structured version Visualization version GIF version |
Description: A commutative ring is a ring. (Contributed by SN, 16-May-2024.) |
Ref | Expression |
---|---|
crngringd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Ref | Expression |
---|---|
crngringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngringd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
2 | crngring 19795 | . 2 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Ringcrg 19783 CRingccrg 19784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-cring 19786 |
This theorem is referenced by: crnggrpd 19797 asclrhm 21094 evlslem1 21292 recvs 24309 frobrhm 31485 znfermltl 31562 idlsrgmulrssin 31658 ply1fermltl 31670 zarclsun 31820 zarmxt1 31830 zarcmplem 31831 pwsgprod 40269 mplascl0 40270 evl0 40271 evlsval3 40272 evlsbagval 40275 evlsexpval 40276 mhphf 40285 mhphf4 40288 |
Copyright terms: Public domain | W3C validator |