MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbssint Structured version   Visualization version   GIF version

Theorem fbssint 22135
Description: A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbssint ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → ∃𝑥𝐹 𝑥 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem fbssint
StepHypRef Expression
1 fbasne0 22127 . . . . . 6 (𝐹 ∈ (fBas‘𝐵) → 𝐹 ≠ ∅)
2 n0 4234 . . . . . 6 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
31, 2sylib 219 . . . . 5 (𝐹 ∈ (fBas‘𝐵) → ∃𝑥 𝑥𝐹)
4 ssv 3916 . . . . . . . 8 𝑥 ⊆ V
54jctr 525 . . . . . . 7 (𝑥𝐹 → (𝑥𝐹𝑥 ⊆ V))
65eximi 1816 . . . . . 6 (∃𝑥 𝑥𝐹 → ∃𝑥(𝑥𝐹𝑥 ⊆ V))
7 df-rex 3111 . . . . . 6 (∃𝑥𝐹 𝑥 ⊆ V ↔ ∃𝑥(𝑥𝐹𝑥 ⊆ V))
86, 7sylibr 235 . . . . 5 (∃𝑥 𝑥𝐹 → ∃𝑥𝐹 𝑥 ⊆ V)
93, 8syl 17 . . . 4 (𝐹 ∈ (fBas‘𝐵) → ∃𝑥𝐹 𝑥 ⊆ V)
10 inteq 4789 . . . . . . 7 (𝐴 = ∅ → 𝐴 = ∅)
11 int0 4800 . . . . . . 7 ∅ = V
1210, 11syl6eq 2847 . . . . . 6 (𝐴 = ∅ → 𝐴 = V)
1312sseq2d 3924 . . . . 5 (𝐴 = ∅ → (𝑥 𝐴𝑥 ⊆ V))
1413rexbidv 3260 . . . 4 (𝐴 = ∅ → (∃𝑥𝐹 𝑥 𝐴 ↔ ∃𝑥𝐹 𝑥 ⊆ V))
159, 14syl5ibrcom 248 . . 3 (𝐹 ∈ (fBas‘𝐵) → (𝐴 = ∅ → ∃𝑥𝐹 𝑥 𝐴))
16153ad2ant1 1126 . 2 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → (𝐴 = ∅ → ∃𝑥𝐹 𝑥 𝐴))
17 simpl1 1184 . . . 4 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐹 ∈ (fBas‘𝐵))
18 simpl2 1185 . . . . 5 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴𝐹)
19 simpr 485 . . . . 5 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
20 simpl3 1186 . . . . 5 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
21 elfir 8730 . . . . 5 ((𝐹 ∈ (fBas‘𝐵) ∧ (𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐹))
2217, 18, 19, 20, 21syl13anc 1365 . . . 4 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ (fi‘𝐹))
23 fbssfi 22134 . . . 4 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥𝐹 𝑥 𝐴)
2417, 22, 23syl2anc 584 . . 3 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐹 𝑥 𝐴)
2524ex 413 . 2 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥𝐹 𝑥 𝐴))
2616, 25pm2.61dne 3071 1 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → ∃𝑥𝐹 𝑥 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wex 1761  wcel 2081  wne 2984  wrex 3106  Vcvv 3437  wss 3863  c0 4215   cint 4786  cfv 6230  Fincfn 8362  ficfi 8725  fBascfbas 20220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-oadd 7962  df-er 8144  df-en 8363  df-fin 8366  df-fi 8726  df-fbas 20229
This theorem is referenced by:  fbasfip  22165
  Copyright terms: Public domain W3C validator