MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbssint Structured version   Visualization version   GIF version

Theorem fbssint 23867
Description: A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbssint ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → ∃𝑥𝐹 𝑥 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem fbssint
StepHypRef Expression
1 fbasne0 23859 . . . . . 6 (𝐹 ∈ (fBas‘𝐵) → 𝐹 ≠ ∅)
2 n0 4376 . . . . . 6 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
31, 2sylib 218 . . . . 5 (𝐹 ∈ (fBas‘𝐵) → ∃𝑥 𝑥𝐹)
4 ssv 4033 . . . . . . . 8 𝑥 ⊆ V
54jctr 524 . . . . . . 7 (𝑥𝐹 → (𝑥𝐹𝑥 ⊆ V))
65eximi 1833 . . . . . 6 (∃𝑥 𝑥𝐹 → ∃𝑥(𝑥𝐹𝑥 ⊆ V))
7 df-rex 3077 . . . . . 6 (∃𝑥𝐹 𝑥 ⊆ V ↔ ∃𝑥(𝑥𝐹𝑥 ⊆ V))
86, 7sylibr 234 . . . . 5 (∃𝑥 𝑥𝐹 → ∃𝑥𝐹 𝑥 ⊆ V)
93, 8syl 17 . . . 4 (𝐹 ∈ (fBas‘𝐵) → ∃𝑥𝐹 𝑥 ⊆ V)
10 inteq 4973 . . . . . . 7 (𝐴 = ∅ → 𝐴 = ∅)
11 int0 4986 . . . . . . 7 ∅ = V
1210, 11eqtrdi 2796 . . . . . 6 (𝐴 = ∅ → 𝐴 = V)
1312sseq2d 4041 . . . . 5 (𝐴 = ∅ → (𝑥 𝐴𝑥 ⊆ V))
1413rexbidv 3185 . . . 4 (𝐴 = ∅ → (∃𝑥𝐹 𝑥 𝐴 ↔ ∃𝑥𝐹 𝑥 ⊆ V))
159, 14syl5ibrcom 247 . . 3 (𝐹 ∈ (fBas‘𝐵) → (𝐴 = ∅ → ∃𝑥𝐹 𝑥 𝐴))
16153ad2ant1 1133 . 2 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → (𝐴 = ∅ → ∃𝑥𝐹 𝑥 𝐴))
17 simpl1 1191 . . . 4 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐹 ∈ (fBas‘𝐵))
18 simpl2 1192 . . . . 5 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴𝐹)
19 simpr 484 . . . . 5 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
20 simpl3 1193 . . . . 5 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
21 elfir 9484 . . . . 5 ((𝐹 ∈ (fBas‘𝐵) ∧ (𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐹))
2217, 18, 19, 20, 21syl13anc 1372 . . . 4 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ (fi‘𝐹))
23 fbssfi 23866 . . . 4 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥𝐹 𝑥 𝐴)
2417, 22, 23syl2anc 583 . . 3 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐹 𝑥 𝐴)
2524ex 412 . 2 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥𝐹 𝑥 𝐴))
2616, 25pm2.61dne 3034 1 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → ∃𝑥𝐹 𝑥 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  wss 3976  c0 4352   cint 4970  cfv 6573  Fincfn 9003  ficfi 9479  fBascfbas 21375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-fin 9007  df-fi 9480  df-fbas 21384
This theorem is referenced by:  fbasfip  23897
  Copyright terms: Public domain W3C validator