MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbssint Structured version   Visualization version   GIF version

Theorem fbssint 23741
Description: A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbssint ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → ∃𝑥𝐹 𝑥 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem fbssint
StepHypRef Expression
1 fbasne0 23733 . . . . . 6 (𝐹 ∈ (fBas‘𝐵) → 𝐹 ≠ ∅)
2 n0 4306 . . . . . 6 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
31, 2sylib 218 . . . . 5 (𝐹 ∈ (fBas‘𝐵) → ∃𝑥 𝑥𝐹)
4 ssv 3962 . . . . . . . 8 𝑥 ⊆ V
54jctr 524 . . . . . . 7 (𝑥𝐹 → (𝑥𝐹𝑥 ⊆ V))
65eximi 1835 . . . . . 6 (∃𝑥 𝑥𝐹 → ∃𝑥(𝑥𝐹𝑥 ⊆ V))
7 df-rex 3054 . . . . . 6 (∃𝑥𝐹 𝑥 ⊆ V ↔ ∃𝑥(𝑥𝐹𝑥 ⊆ V))
86, 7sylibr 234 . . . . 5 (∃𝑥 𝑥𝐹 → ∃𝑥𝐹 𝑥 ⊆ V)
93, 8syl 17 . . . 4 (𝐹 ∈ (fBas‘𝐵) → ∃𝑥𝐹 𝑥 ⊆ V)
10 inteq 4902 . . . . . . 7 (𝐴 = ∅ → 𝐴 = ∅)
11 int0 4915 . . . . . . 7 ∅ = V
1210, 11eqtrdi 2780 . . . . . 6 (𝐴 = ∅ → 𝐴 = V)
1312sseq2d 3970 . . . . 5 (𝐴 = ∅ → (𝑥 𝐴𝑥 ⊆ V))
1413rexbidv 3153 . . . 4 (𝐴 = ∅ → (∃𝑥𝐹 𝑥 𝐴 ↔ ∃𝑥𝐹 𝑥 ⊆ V))
159, 14syl5ibrcom 247 . . 3 (𝐹 ∈ (fBas‘𝐵) → (𝐴 = ∅ → ∃𝑥𝐹 𝑥 𝐴))
16153ad2ant1 1133 . 2 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → (𝐴 = ∅ → ∃𝑥𝐹 𝑥 𝐴))
17 simpl1 1192 . . . 4 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐹 ∈ (fBas‘𝐵))
18 simpl2 1193 . . . . 5 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴𝐹)
19 simpr 484 . . . . 5 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
20 simpl3 1194 . . . . 5 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
21 elfir 9324 . . . . 5 ((𝐹 ∈ (fBas‘𝐵) ∧ (𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐹))
2217, 18, 19, 20, 21syl13anc 1374 . . . 4 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ (fi‘𝐹))
23 fbssfi 23740 . . . 4 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥𝐹 𝑥 𝐴)
2417, 22, 23syl2anc 584 . . 3 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐹 𝑥 𝐴)
2524ex 412 . 2 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥𝐹 𝑥 𝐴))
2616, 25pm2.61dne 3011 1 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → ∃𝑥𝐹 𝑥 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  Vcvv 3438  wss 3905  c0 4286   cint 4899  cfv 6486  Fincfn 8879  ficfi 9319  fBascfbas 21267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-1o 8395  df-2o 8396  df-en 8880  df-fin 8883  df-fi 9320  df-fbas 21276
This theorem is referenced by:  fbasfip  23771
  Copyright terms: Public domain W3C validator