| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fbssint | Structured version Visualization version GIF version | ||
| Description: A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| fbssint | ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fbasne0 23746 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐹 ≠ ∅) | |
| 2 | n0 4302 | . . . . . 6 ⊢ (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐹) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝐵) → ∃𝑥 𝑥 ∈ 𝐹) |
| 4 | ssv 3955 | . . . . . . . 8 ⊢ 𝑥 ⊆ V | |
| 5 | 4 | jctr 524 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐹 → (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) |
| 6 | 5 | eximi 1836 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ 𝐹 → ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) |
| 7 | df-rex 3058 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ V ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) | |
| 8 | 6, 7 | sylibr 234 | . . . . 5 ⊢ (∃𝑥 𝑥 ∈ 𝐹 → ∃𝑥 ∈ 𝐹 𝑥 ⊆ V) |
| 9 | 3, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝐵) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ V) |
| 10 | inteq 4900 | . . . . . . 7 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
| 11 | int0 4912 | . . . . . . 7 ⊢ ∩ ∅ = V | |
| 12 | 10, 11 | eqtrdi 2784 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
| 13 | 12 | sseq2d 3963 | . . . . 5 ⊢ (𝐴 = ∅ → (𝑥 ⊆ ∩ 𝐴 ↔ 𝑥 ⊆ V)) |
| 14 | 13 | rexbidv 3157 | . . . 4 ⊢ (𝐴 = ∅ → (∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴 ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ V)) |
| 15 | 9, 14 | syl5ibrcom 247 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝐵) → (𝐴 = ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
| 16 | 15 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → (𝐴 = ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
| 17 | simpl1 1192 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐹 ∈ (fBas‘𝐵)) | |
| 18 | simpl2 1193 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝐹) | |
| 19 | simpr 484 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
| 20 | simpl3 1194 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) | |
| 21 | elfir 9306 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ (𝐴 ⊆ 𝐹 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐹)) | |
| 22 | 17, 18, 19, 20, 21 | syl13anc 1374 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ (fi‘𝐹)) |
| 23 | fbssfi 23753 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ ∩ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) | |
| 24 | 17, 22, 23 | syl2anc 584 | . . 3 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
| 25 | 24 | ex 412 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
| 26 | 16, 25 | pm2.61dne 3015 | 1 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 ∩ cint 4897 ‘cfv 6486 Fincfn 8875 ficfi 9301 fBascfbas 21281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7803 df-1o 8391 df-2o 8392 df-en 8876 df-fin 8879 df-fi 9302 df-fbas 21290 |
| This theorem is referenced by: fbasfip 23784 |
| Copyright terms: Public domain | W3C validator |