MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbssint Structured version   Visualization version   GIF version

Theorem fbssint 22735
Description: A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbssint ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → ∃𝑥𝐹 𝑥 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem fbssint
StepHypRef Expression
1 fbasne0 22727 . . . . . 6 (𝐹 ∈ (fBas‘𝐵) → 𝐹 ≠ ∅)
2 n0 4261 . . . . . 6 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
31, 2sylib 221 . . . . 5 (𝐹 ∈ (fBas‘𝐵) → ∃𝑥 𝑥𝐹)
4 ssv 3925 . . . . . . . 8 𝑥 ⊆ V
54jctr 528 . . . . . . 7 (𝑥𝐹 → (𝑥𝐹𝑥 ⊆ V))
65eximi 1842 . . . . . 6 (∃𝑥 𝑥𝐹 → ∃𝑥(𝑥𝐹𝑥 ⊆ V))
7 df-rex 3067 . . . . . 6 (∃𝑥𝐹 𝑥 ⊆ V ↔ ∃𝑥(𝑥𝐹𝑥 ⊆ V))
86, 7sylibr 237 . . . . 5 (∃𝑥 𝑥𝐹 → ∃𝑥𝐹 𝑥 ⊆ V)
93, 8syl 17 . . . 4 (𝐹 ∈ (fBas‘𝐵) → ∃𝑥𝐹 𝑥 ⊆ V)
10 inteq 4862 . . . . . . 7 (𝐴 = ∅ → 𝐴 = ∅)
11 int0 4873 . . . . . . 7 ∅ = V
1210, 11eqtrdi 2794 . . . . . 6 (𝐴 = ∅ → 𝐴 = V)
1312sseq2d 3933 . . . . 5 (𝐴 = ∅ → (𝑥 𝐴𝑥 ⊆ V))
1413rexbidv 3216 . . . 4 (𝐴 = ∅ → (∃𝑥𝐹 𝑥 𝐴 ↔ ∃𝑥𝐹 𝑥 ⊆ V))
159, 14syl5ibrcom 250 . . 3 (𝐹 ∈ (fBas‘𝐵) → (𝐴 = ∅ → ∃𝑥𝐹 𝑥 𝐴))
16153ad2ant1 1135 . 2 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → (𝐴 = ∅ → ∃𝑥𝐹 𝑥 𝐴))
17 simpl1 1193 . . . 4 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐹 ∈ (fBas‘𝐵))
18 simpl2 1194 . . . . 5 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴𝐹)
19 simpr 488 . . . . 5 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
20 simpl3 1195 . . . . 5 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
21 elfir 9031 . . . . 5 ((𝐹 ∈ (fBas‘𝐵) ∧ (𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐹))
2217, 18, 19, 20, 21syl13anc 1374 . . . 4 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ (fi‘𝐹))
23 fbssfi 22734 . . . 4 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥𝐹 𝑥 𝐴)
2417, 22, 23syl2anc 587 . . 3 (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐹 𝑥 𝐴)
2524ex 416 . 2 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥𝐹 𝑥 𝐴))
2616, 25pm2.61dne 3028 1 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴𝐹𝐴 ∈ Fin) → ∃𝑥𝐹 𝑥 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110  wne 2940  wrex 3062  Vcvv 3408  wss 3866  c0 4237   cint 4859  cfv 6380  Fincfn 8626  ficfi 9026  fBascfbas 20351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-1o 8202  df-er 8391  df-en 8627  df-fin 8630  df-fi 9027  df-fbas 20360
This theorem is referenced by:  fbasfip  22765
  Copyright terms: Public domain W3C validator