![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fbssint | Structured version Visualization version GIF version |
Description: A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
fbssint | ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fbasne0 23263 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐹 ≠ ∅) | |
2 | n0 4342 | . . . . . 6 ⊢ (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐹) | |
3 | 1, 2 | sylib 217 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝐵) → ∃𝑥 𝑥 ∈ 𝐹) |
4 | ssv 4002 | . . . . . . . 8 ⊢ 𝑥 ⊆ V | |
5 | 4 | jctr 525 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐹 → (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) |
6 | 5 | eximi 1837 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ 𝐹 → ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) |
7 | df-rex 3070 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ V ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) | |
8 | 6, 7 | sylibr 233 | . . . . 5 ⊢ (∃𝑥 𝑥 ∈ 𝐹 → ∃𝑥 ∈ 𝐹 𝑥 ⊆ V) |
9 | 3, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝐵) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ V) |
10 | inteq 4946 | . . . . . . 7 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
11 | int0 4959 | . . . . . . 7 ⊢ ∩ ∅ = V | |
12 | 10, 11 | eqtrdi 2787 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
13 | 12 | sseq2d 4010 | . . . . 5 ⊢ (𝐴 = ∅ → (𝑥 ⊆ ∩ 𝐴 ↔ 𝑥 ⊆ V)) |
14 | 13 | rexbidv 3177 | . . . 4 ⊢ (𝐴 = ∅ → (∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴 ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ V)) |
15 | 9, 14 | syl5ibrcom 246 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝐵) → (𝐴 = ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
16 | 15 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → (𝐴 = ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
17 | simpl1 1191 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐹 ∈ (fBas‘𝐵)) | |
18 | simpl2 1192 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝐹) | |
19 | simpr 485 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
20 | simpl3 1193 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) | |
21 | elfir 9392 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ (𝐴 ⊆ 𝐹 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐹)) | |
22 | 17, 18, 19, 20, 21 | syl13anc 1372 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ (fi‘𝐹)) |
23 | fbssfi 23270 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ ∩ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) | |
24 | 17, 22, 23 | syl2anc 584 | . . 3 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
25 | 24 | ex 413 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
26 | 16, 25 | pm2.61dne 3027 | 1 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2939 ∃wrex 3069 Vcvv 3473 ⊆ wss 3944 ∅c0 4318 ∩ cint 4943 ‘cfv 6532 Fincfn 8922 ficfi 9387 fBascfbas 20866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-om 7839 df-1o 8448 df-er 8686 df-en 8923 df-fin 8926 df-fi 9388 df-fbas 20875 |
This theorem is referenced by: fbasfip 23301 |
Copyright terms: Public domain | W3C validator |