Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fbssint | Structured version Visualization version GIF version |
Description: A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
fbssint | ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fbasne0 22981 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐹 ≠ ∅) | |
2 | n0 4280 | . . . . . 6 ⊢ (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐹) | |
3 | 1, 2 | sylib 217 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝐵) → ∃𝑥 𝑥 ∈ 𝐹) |
4 | ssv 3945 | . . . . . . . 8 ⊢ 𝑥 ⊆ V | |
5 | 4 | jctr 525 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐹 → (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) |
6 | 5 | eximi 1837 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ 𝐹 → ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) |
7 | df-rex 3070 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ V ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) | |
8 | 6, 7 | sylibr 233 | . . . . 5 ⊢ (∃𝑥 𝑥 ∈ 𝐹 → ∃𝑥 ∈ 𝐹 𝑥 ⊆ V) |
9 | 3, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝐵) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ V) |
10 | inteq 4882 | . . . . . . 7 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
11 | int0 4893 | . . . . . . 7 ⊢ ∩ ∅ = V | |
12 | 10, 11 | eqtrdi 2794 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
13 | 12 | sseq2d 3953 | . . . . 5 ⊢ (𝐴 = ∅ → (𝑥 ⊆ ∩ 𝐴 ↔ 𝑥 ⊆ V)) |
14 | 13 | rexbidv 3226 | . . . 4 ⊢ (𝐴 = ∅ → (∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴 ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ V)) |
15 | 9, 14 | syl5ibrcom 246 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝐵) → (𝐴 = ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
16 | 15 | 3ad2ant1 1132 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → (𝐴 = ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
17 | simpl1 1190 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐹 ∈ (fBas‘𝐵)) | |
18 | simpl2 1191 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝐹) | |
19 | simpr 485 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
20 | simpl3 1192 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) | |
21 | elfir 9174 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ (𝐴 ⊆ 𝐹 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐹)) | |
22 | 17, 18, 19, 20, 21 | syl13anc 1371 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ (fi‘𝐹)) |
23 | fbssfi 22988 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ ∩ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) | |
24 | 17, 22, 23 | syl2anc 584 | . . 3 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
25 | 24 | ex 413 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
26 | 16, 25 | pm2.61dne 3031 | 1 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 ∩ cint 4879 ‘cfv 6433 Fincfn 8733 ficfi 9169 fBascfbas 20585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-er 8498 df-en 8734 df-fin 8737 df-fi 9170 df-fbas 20594 |
This theorem is referenced by: fbasfip 23019 |
Copyright terms: Public domain | W3C validator |