Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fbssint | Structured version Visualization version GIF version |
Description: A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
fbssint | ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fbasne0 22889 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐹 ≠ ∅) | |
2 | n0 4277 | . . . . . 6 ⊢ (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐹) | |
3 | 1, 2 | sylib 217 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝐵) → ∃𝑥 𝑥 ∈ 𝐹) |
4 | ssv 3941 | . . . . . . . 8 ⊢ 𝑥 ⊆ V | |
5 | 4 | jctr 524 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐹 → (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) |
6 | 5 | eximi 1838 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ 𝐹 → ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) |
7 | df-rex 3069 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ V ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) | |
8 | 6, 7 | sylibr 233 | . . . . 5 ⊢ (∃𝑥 𝑥 ∈ 𝐹 → ∃𝑥 ∈ 𝐹 𝑥 ⊆ V) |
9 | 3, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝐵) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ V) |
10 | inteq 4879 | . . . . . . 7 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
11 | int0 4890 | . . . . . . 7 ⊢ ∩ ∅ = V | |
12 | 10, 11 | eqtrdi 2795 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
13 | 12 | sseq2d 3949 | . . . . 5 ⊢ (𝐴 = ∅ → (𝑥 ⊆ ∩ 𝐴 ↔ 𝑥 ⊆ V)) |
14 | 13 | rexbidv 3225 | . . . 4 ⊢ (𝐴 = ∅ → (∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴 ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ V)) |
15 | 9, 14 | syl5ibrcom 246 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝐵) → (𝐴 = ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
16 | 15 | 3ad2ant1 1131 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → (𝐴 = ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
17 | simpl1 1189 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐹 ∈ (fBas‘𝐵)) | |
18 | simpl2 1190 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝐹) | |
19 | simpr 484 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
20 | simpl3 1191 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) | |
21 | elfir 9104 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ (𝐴 ⊆ 𝐹 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐹)) | |
22 | 17, 18, 19, 20, 21 | syl13anc 1370 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ (fi‘𝐹)) |
23 | fbssfi 22896 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ ∩ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) | |
24 | 17, 22, 23 | syl2anc 583 | . . 3 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
25 | 24 | ex 412 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
26 | 16, 25 | pm2.61dne 3030 | 1 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 ∩ cint 4876 ‘cfv 6418 Fincfn 8691 ficfi 9099 fBascfbas 20498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-er 8456 df-en 8692 df-fin 8695 df-fi 9100 df-fbas 20507 |
This theorem is referenced by: fbasfip 22927 |
Copyright terms: Public domain | W3C validator |