![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fbssint | Structured version Visualization version GIF version |
Description: A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
fbssint | ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fbasne0 21854 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐹 ≠ ∅) | |
2 | n0 4078 | . . . . . 6 ⊢ (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐹) | |
3 | 1, 2 | sylib 208 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝐵) → ∃𝑥 𝑥 ∈ 𝐹) |
4 | ssv 3774 | . . . . . . . 8 ⊢ 𝑥 ⊆ V | |
5 | 4 | jctr 508 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐹 → (𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) |
6 | 5 | eximi 1910 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ 𝐹 → ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) |
7 | df-rex 3067 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ V ↔ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ V)) | |
8 | 6, 7 | sylibr 224 | . . . . 5 ⊢ (∃𝑥 𝑥 ∈ 𝐹 → ∃𝑥 ∈ 𝐹 𝑥 ⊆ V) |
9 | 3, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝐵) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ V) |
10 | inteq 4614 | . . . . . . 7 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
11 | int0 4625 | . . . . . . 7 ⊢ ∩ ∅ = V | |
12 | 10, 11 | syl6eq 2821 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
13 | 12 | sseq2d 3782 | . . . . 5 ⊢ (𝐴 = ∅ → (𝑥 ⊆ ∩ 𝐴 ↔ 𝑥 ⊆ V)) |
14 | 13 | rexbidv 3200 | . . . 4 ⊢ (𝐴 = ∅ → (∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴 ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ V)) |
15 | 9, 14 | syl5ibrcom 237 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝐵) → (𝐴 = ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
16 | 15 | 3ad2ant1 1127 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → (𝐴 = ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
17 | simpl1 1227 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐹 ∈ (fBas‘𝐵)) | |
18 | simpl2 1229 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝐹) | |
19 | simpr 471 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
20 | simpl3 1231 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) | |
21 | elfir 8477 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ (𝐴 ⊆ 𝐹 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐹)) | |
22 | 17, 18, 19, 20, 21 | syl13anc 1478 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ (fi‘𝐹)) |
23 | fbssfi 21861 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ ∩ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) | |
24 | 17, 22, 23 | syl2anc 565 | . . 3 ⊢ (((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
25 | 24 | ex 397 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴)) |
26 | 16, 25 | pm2.61dne 3029 | 1 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝐴 ⊆ 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∃wex 1852 ∈ wcel 2145 ≠ wne 2943 ∃wrex 3062 Vcvv 3351 ⊆ wss 3723 ∅c0 4063 ∩ cint 4611 ‘cfv 6031 Fincfn 8109 ficfi 8472 fBascfbas 19949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-fin 8113 df-fi 8473 df-fbas 19958 |
This theorem is referenced by: fbasfip 21892 |
Copyright terms: Public domain | W3C validator |