Proof of Theorem noinffv
Step | Hyp | Ref
| Expression |
1 | | noinffv.1 |
. . . . 5
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
2 | | iffalse 4465 |
. . . . 5
⊢ (¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
3 | 1, 2 | syl5eq 2791 |
. . . 4
⊢ (¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → 𝑇 = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
4 | 3 | fveq1d 6758 |
. . 3
⊢ (¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → (𝑇‘𝐺) = ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺)) |
5 | 4 | 3ad2ant1 1131 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇‘𝐺) = ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺)) |
6 | | dmeq 5801 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → dom 𝑢 = dom 𝑈) |
7 | 6 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → (𝐺 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑈)) |
8 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑈 → (𝑢 <s 𝑣 ↔ 𝑈 <s 𝑣)) |
9 | 8 | notbid 317 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → (¬ 𝑢 <s 𝑣 ↔ ¬ 𝑈 <s 𝑣)) |
10 | | reseq1 5874 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑈 → (𝑢 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺)) |
11 | 10 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
12 | 9, 11 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
13 | 12 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
14 | 7, 13 | anbi12d 630 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
15 | 14 | rspcev 3552 |
. . . . . 6
⊢ ((𝑈 ∈ 𝐵 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
16 | 15 | 3impb 1113 |
. . . . 5
⊢ ((𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
17 | 16 | 3ad2ant3 1133 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
18 | | simp32 1208 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑈) |
19 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑦 = 𝐺 → (𝑦 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑢)) |
20 | | suceq 6316 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐺 → suc 𝑦 = suc 𝐺) |
21 | 20 | reseq2d 5880 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐺 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝐺)) |
22 | 20 | reseq2d 5880 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐺 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝐺)) |
23 | 21, 22 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐺 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
24 | 23 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑦 = 𝐺 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
25 | 24 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑦 = 𝐺 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
26 | 19, 25 | anbi12d 630 |
. . . . . . 7
⊢ (𝑦 = 𝐺 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
27 | 26 | rexbidv 3225 |
. . . . . 6
⊢ (𝑦 = 𝐺 → (∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
28 | 27 | elabg 3600 |
. . . . 5
⊢ (𝐺 ∈ dom 𝑈 → (𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
29 | 18, 28 | syl 17 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
30 | 17, 29 | mpbird 256 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
31 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑔 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑢)) |
32 | | suceq 6316 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → suc 𝑔 = suc 𝐺) |
33 | 32 | reseq2d 5880 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑢 ↾ suc 𝑔) = (𝑢 ↾ suc 𝐺)) |
34 | 32 | reseq2d 5880 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑣 ↾ suc 𝑔) = (𝑣 ↾ suc 𝐺)) |
35 | 33, 34 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔) ↔ (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
36 | 35 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
37 | 36 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
38 | | fveqeq2 6765 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑢‘𝑔) = 𝑥 ↔ (𝑢‘𝐺) = 𝑥)) |
39 | 31, 37, 38 | 3anbi123d 1434 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
40 | 39 | rexbidv 3225 |
. . . . 5
⊢ (𝑔 = 𝐺 → (∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
41 | 40 | iotabidv 6402 |
. . . 4
⊢ (𝑔 = 𝐺 → (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = (℩𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
42 | | eqid 2738 |
. . . 4
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
43 | | iotaex 6398 |
. . . 4
⊢
(℩𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) ∈ V |
44 | 41, 42, 43 | fvmpt 6857 |
. . 3
⊢ (𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} → ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺) = (℩𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
45 | 30, 44 | syl 17 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺) = (℩𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
46 | | simp1 1134 |
. . . . 5
⊢ ((𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → 𝑈 ∈ 𝐵) |
47 | | simp2 1135 |
. . . . 5
⊢ ((𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → 𝐺 ∈ dom 𝑈) |
48 | | simp3 1136 |
. . . . 5
⊢ ((𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
49 | | eqidd 2739 |
. . . . 5
⊢ ((𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → (𝑈‘𝐺) = (𝑈‘𝐺)) |
50 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → (𝑢‘𝐺) = (𝑈‘𝐺)) |
51 | 50 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → ((𝑢‘𝐺) = (𝑈‘𝐺) ↔ (𝑈‘𝐺) = (𝑈‘𝐺))) |
52 | 7, 13, 51 | 3anbi123d 1434 |
. . . . . 6
⊢ (𝑢 = 𝑈 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑈‘𝐺) = (𝑈‘𝐺)))) |
53 | 52 | rspcev 3552 |
. . . . 5
⊢ ((𝑈 ∈ 𝐵 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑈‘𝐺) = (𝑈‘𝐺))) → ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺))) |
54 | 46, 47, 48, 49, 53 | syl13anc 1370 |
. . . 4
⊢ ((𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺))) |
55 | 54 | 3ad2ant3 1133 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺))) |
56 | | fvex 6769 |
. . . 4
⊢ (𝑈‘𝐺) ∈ V |
57 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑢‘𝐺) = (𝑢‘𝐺) |
58 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (𝑢‘𝐺) ∈ V |
59 | | eqeq2 2750 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑢‘𝐺) → ((𝑢‘𝐺) = 𝑥 ↔ (𝑢‘𝐺) = (𝑢‘𝐺))) |
60 | 59 | 3anbi3d 1440 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑢‘𝐺) → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑢‘𝐺)))) |
61 | 58, 60 | spcev 3535 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑢‘𝐺)) → ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
62 | 57, 61 | mp3an3 1448 |
. . . . . . . . 9
⊢ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
63 | 62 | reximi 3174 |
. . . . . . . 8
⊢
(∃𝑢 ∈
𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑢 ∈ 𝐵 ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
64 | | rexcom4 3179 |
. . . . . . . 8
⊢
(∃𝑢 ∈
𝐵 ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∃𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
65 | 63, 64 | sylib 217 |
. . . . . . 7
⊢
(∃𝑢 ∈
𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
66 | 16, 65 | syl 17 |
. . . . . 6
⊢ ((𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
67 | 66 | 3ad2ant3 1133 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
68 | | simp2l 1197 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐵 ⊆ No
) |
69 | | noinfprefixmo 33831 |
. . . . . 6
⊢ (𝐵 ⊆
No → ∃*𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
70 | 68, 69 | syl 17 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃*𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
71 | | df-eu 2569 |
. . . . 5
⊢
(∃!𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (∃𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃*𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
72 | 67, 70, 71 | sylanbrc 582 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃!𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
73 | | eqeq2 2750 |
. . . . . . 7
⊢ (𝑥 = (𝑈‘𝐺) → ((𝑢‘𝐺) = 𝑥 ↔ (𝑢‘𝐺) = (𝑈‘𝐺))) |
74 | 73 | 3anbi3d 1440 |
. . . . . 6
⊢ (𝑥 = (𝑈‘𝐺) → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)))) |
75 | 74 | rexbidv 3225 |
. . . . 5
⊢ (𝑥 = (𝑈‘𝐺) → (∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)))) |
76 | 75 | iota2 6407 |
. . . 4
⊢ (((𝑈‘𝐺) ∈ V ∧ ∃!𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) → (∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)) ↔ (℩𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) = (𝑈‘𝐺))) |
77 | 56, 72, 76 | sylancr 586 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)) ↔ (℩𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) = (𝑈‘𝐺))) |
78 | 55, 77 | mpbid 231 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (℩𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) = (𝑈‘𝐺)) |
79 | 5, 45, 78 | 3eqtrd 2782 |
1
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇‘𝐺) = (𝑈‘𝐺)) |