Proof of Theorem noinffv
| Step | Hyp | Ref
| Expression |
| 1 | | noinffv.1 |
. . . . 5
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| 2 | | iffalse 4534 |
. . . . 5
⊢ (¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| 3 | 1, 2 | eqtrid 2789 |
. . . 4
⊢ (¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → 𝑇 = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| 4 | 3 | fveq1d 6908 |
. . 3
⊢ (¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → (𝑇‘𝐺) = ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺)) |
| 5 | 4 | 3ad2ant1 1134 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇‘𝐺) = ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺)) |
| 6 | | dmeq 5914 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → dom 𝑢 = dom 𝑈) |
| 7 | 6 | eleq2d 2827 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → (𝐺 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑈)) |
| 8 | | breq1 5146 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑈 → (𝑢 <s 𝑣 ↔ 𝑈 <s 𝑣)) |
| 9 | 8 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → (¬ 𝑢 <s 𝑣 ↔ ¬ 𝑈 <s 𝑣)) |
| 10 | | reseq1 5991 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑈 → (𝑢 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺)) |
| 11 | 10 | eqeq1d 2739 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 12 | 9, 11 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 13 | 12 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 14 | 7, 13 | anbi12d 632 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
| 15 | 14 | rspcev 3622 |
. . . . . 6
⊢ ((𝑈 ∈ 𝐵 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 16 | 15 | 3impb 1115 |
. . . . 5
⊢ ((𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 17 | 16 | 3ad2ant3 1136 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 18 | | simp32 1211 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑈) |
| 19 | | eleq1 2829 |
. . . . . . . 8
⊢ (𝑦 = 𝐺 → (𝑦 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑢)) |
| 20 | | suceq 6450 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐺 → suc 𝑦 = suc 𝐺) |
| 21 | 20 | reseq2d 5997 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐺 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝐺)) |
| 22 | 20 | reseq2d 5997 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐺 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝐺)) |
| 23 | 21, 22 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐺 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 24 | 23 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑦 = 𝐺 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 25 | 24 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑦 = 𝐺 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 26 | 19, 25 | anbi12d 632 |
. . . . . . 7
⊢ (𝑦 = 𝐺 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
| 27 | 26 | rexbidv 3179 |
. . . . . 6
⊢ (𝑦 = 𝐺 → (∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
| 28 | 27 | elabg 3676 |
. . . . 5
⊢ (𝐺 ∈ dom 𝑈 → (𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
| 29 | 18, 28 | syl 17 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
| 30 | 17, 29 | mpbird 257 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
| 31 | | eleq1 2829 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑔 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑢)) |
| 32 | | suceq 6450 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → suc 𝑔 = suc 𝐺) |
| 33 | 32 | reseq2d 5997 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑢 ↾ suc 𝑔) = (𝑢 ↾ suc 𝐺)) |
| 34 | 32 | reseq2d 5997 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑣 ↾ suc 𝑔) = (𝑣 ↾ suc 𝐺)) |
| 35 | 33, 34 | eqeq12d 2753 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔) ↔ (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 36 | 35 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 37 | 36 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
| 38 | | fveqeq2 6915 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑢‘𝑔) = 𝑥 ↔ (𝑢‘𝐺) = 𝑥)) |
| 39 | 31, 37, 38 | 3anbi123d 1438 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
| 40 | 39 | rexbidv 3179 |
. . . . 5
⊢ (𝑔 = 𝐺 → (∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
| 41 | 40 | iotabidv 6545 |
. . . 4
⊢ (𝑔 = 𝐺 → (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = (℩𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
| 42 | | eqid 2737 |
. . . 4
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
| 43 | | iotaex 6534 |
. . . 4
⊢
(℩𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) ∈ V |
| 44 | 41, 42, 43 | fvmpt 7016 |
. . 3
⊢ (𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} → ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺) = (℩𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
| 45 | 30, 44 | syl 17 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺) = (℩𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
| 46 | | simp1 1137 |
. . . . 5
⊢ ((𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → 𝑈 ∈ 𝐵) |
| 47 | | simp2 1138 |
. . . . 5
⊢ ((𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → 𝐺 ∈ dom 𝑈) |
| 48 | | simp3 1139 |
. . . . 5
⊢ ((𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
| 49 | | eqidd 2738 |
. . . . 5
⊢ ((𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → (𝑈‘𝐺) = (𝑈‘𝐺)) |
| 50 | | fveq1 6905 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → (𝑢‘𝐺) = (𝑈‘𝐺)) |
| 51 | 50 | eqeq1d 2739 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → ((𝑢‘𝐺) = (𝑈‘𝐺) ↔ (𝑈‘𝐺) = (𝑈‘𝐺))) |
| 52 | 7, 13, 51 | 3anbi123d 1438 |
. . . . . 6
⊢ (𝑢 = 𝑈 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑈‘𝐺) = (𝑈‘𝐺)))) |
| 53 | 52 | rspcev 3622 |
. . . . 5
⊢ ((𝑈 ∈ 𝐵 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑈‘𝐺) = (𝑈‘𝐺))) → ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺))) |
| 54 | 46, 47, 48, 49, 53 | syl13anc 1374 |
. . . 4
⊢ ((𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺))) |
| 55 | 54 | 3ad2ant3 1136 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺))) |
| 56 | | fvex 6919 |
. . . 4
⊢ (𝑈‘𝐺) ∈ V |
| 57 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑢‘𝐺) = (𝑢‘𝐺) |
| 58 | | fvex 6919 |
. . . . . . . . . . 11
⊢ (𝑢‘𝐺) ∈ V |
| 59 | | eqeq2 2749 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑢‘𝐺) → ((𝑢‘𝐺) = 𝑥 ↔ (𝑢‘𝐺) = (𝑢‘𝐺))) |
| 60 | 59 | 3anbi3d 1444 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑢‘𝐺) → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑢‘𝐺)))) |
| 61 | 58, 60 | spcev 3606 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑢‘𝐺)) → ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 62 | 57, 61 | mp3an3 1452 |
. . . . . . . . 9
⊢ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 63 | 62 | reximi 3084 |
. . . . . . . 8
⊢
(∃𝑢 ∈
𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑢 ∈ 𝐵 ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 64 | | rexcom4 3288 |
. . . . . . . 8
⊢
(∃𝑢 ∈
𝐵 ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∃𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 65 | 63, 64 | sylib 218 |
. . . . . . 7
⊢
(∃𝑢 ∈
𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 66 | 16, 65 | syl 17 |
. . . . . 6
⊢ ((𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 67 | 66 | 3ad2ant3 1136 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 68 | | simp2l 1200 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐵 ⊆ No
) |
| 69 | | noinfprefixmo 27746 |
. . . . . 6
⊢ (𝐵 ⊆
No → ∃*𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 70 | 68, 69 | syl 17 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃*𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 71 | | df-eu 2569 |
. . . . 5
⊢
(∃!𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (∃𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃*𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
| 72 | 67, 70, 71 | sylanbrc 583 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃!𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
| 73 | | eqeq2 2749 |
. . . . . . 7
⊢ (𝑥 = (𝑈‘𝐺) → ((𝑢‘𝐺) = 𝑥 ↔ (𝑢‘𝐺) = (𝑈‘𝐺))) |
| 74 | 73 | 3anbi3d 1444 |
. . . . . 6
⊢ (𝑥 = (𝑈‘𝐺) → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)))) |
| 75 | 74 | rexbidv 3179 |
. . . . 5
⊢ (𝑥 = (𝑈‘𝐺) → (∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)))) |
| 76 | 75 | iota2 6550 |
. . . 4
⊢ (((𝑈‘𝐺) ∈ V ∧ ∃!𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) → (∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)) ↔ (℩𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) = (𝑈‘𝐺))) |
| 77 | 56, 72, 76 | sylancr 587 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)) ↔ (℩𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) = (𝑈‘𝐺))) |
| 78 | 55, 77 | mpbid 232 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (℩𝑥∃𝑢 ∈ 𝐵 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) = (𝑈‘𝐺)) |
| 79 | 5, 45, 78 | 3eqtrd 2781 |
1
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇‘𝐺) = (𝑈‘𝐺)) |