Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝑃 ∈ ℙ) |
2 | | simp2l 1197 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ) |
3 | | simp3 1136 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ) |
4 | | znq 12385 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ) |
5 | 2, 3, 4 | syl2anc 588 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ) |
6 | 2 | zcnd 12120 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ) |
7 | 3 | nncnd 11683 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ) |
8 | | simp2r 1198 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ≠ 0) |
9 | 3 | nnne0d 11717 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0) |
10 | 6, 7, 8, 9 | divne0d 11463 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≠ 0) |
11 | | eqid 2759 |
. . . 4
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) |
12 | | eqid 2759 |
. . . 4
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) |
13 | 11, 12 | pcval 16229 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ ((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / 𝐵) ≠ 0)) → (𝑃 pCnt (𝐴 / 𝐵)) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))))) |
14 | 1, 5, 10, 13 | syl12anc 836 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))))) |
15 | | eqid 2759 |
. . . . . . . 8
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) |
16 | 15 | pczpre 16232 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < )) |
17 | 16 | 3adant3 1130 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < )) |
18 | | nnz 12036 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
19 | | nnne0 11701 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) |
20 | 18, 19 | jca 516 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) |
21 | | eqid 2759 |
. . . . . . . . 9
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < ) |
22 | 21 | pczpre 16232 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < )) |
23 | 20, 22 | sylan2 596 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < )) |
24 | 23 | 3adant2 1129 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < )) |
25 | 17, 24 | oveq12d 7169 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < ))) |
26 | | eqid 2759 |
. . . . 5
⊢ (𝐴 / 𝐵) = (𝐴 / 𝐵) |
27 | 25, 26 | jctil 524 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < )))) |
28 | | oveq1 7158 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 / 𝑦) = (𝐴 / 𝑦)) |
29 | 28 | eqeq2d 2770 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝐴 / 𝐵) = (𝑥 / 𝑦) ↔ (𝐴 / 𝐵) = (𝐴 / 𝑦))) |
30 | | breq2 5037 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → ((𝑃↑𝑛) ∥ 𝑥 ↔ (𝑃↑𝑛) ∥ 𝐴)) |
31 | 30 | rabbidv 3393 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}) |
32 | 31 | supeq1d 8936 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < )) |
33 | 32 | oveq1d 7166 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )) = (sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))) |
34 | 33 | eqeq2d 2770 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) |
35 | 29, 34 | anbi12d 634 |
. . . . 5
⊢ (𝑥 = 𝐴 → (((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝐴 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))))) |
36 | | oveq2 7159 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵)) |
37 | 36 | eqeq2d 2770 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ((𝐴 / 𝐵) = (𝐴 / 𝑦) ↔ (𝐴 / 𝐵) = (𝐴 / 𝐵))) |
38 | | breq2 5037 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐵 → ((𝑃↑𝑛) ∥ 𝑦 ↔ (𝑃↑𝑛) ∥ 𝐵)) |
39 | 38 | rabbidv 3393 |
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}) |
40 | 39 | supeq1d 8936 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < )) |
41 | 40 | oveq2d 7167 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )) = (sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < ))) |
42 | 41 | eqeq2d 2770 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < )))) |
43 | 37, 42 | anbi12d 634 |
. . . . 5
⊢ (𝑦 = 𝐵 → (((𝐴 / 𝐵) = (𝐴 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < ))))) |
44 | 35, 43 | rspc2ev 3554 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ∧ ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝐵}, ℝ, < )))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) |
45 | 2, 3, 27, 44 | syl3anc 1369 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) |
46 | | ovex 7184 |
. . . 4
⊢ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) ∈ V |
47 | 11, 12 | pceu 16231 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ ((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / 𝐵) ≠ 0)) → ∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) |
48 | 1, 5, 10, 47 | syl12anc 836 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) |
49 | | eqeq1 2763 |
. . . . . . 7
⊢ (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) |
50 | 49 | anbi2d 632 |
. . . . . 6
⊢ (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))))) |
51 | 50 | 2rexbidv 3225 |
. . . . 5
⊢ (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))))) |
52 | 51 | iota2 6325 |
. . . 4
⊢ ((((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) ∈ V ∧ ∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)))) |
53 | 46, 48, 52 | sylancr 591 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)))) |
54 | 45, 53 | mpbid 235 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))) |
55 | 14, 54 | eqtrd 2794 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))) |