MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcdiv Structured version   Visualization version   GIF version

Theorem pcdiv 16189
Description: Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014.)
Assertion
Ref Expression
pcdiv ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)))

Proof of Theorem pcdiv
Dummy variables 𝑥 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝑃 ∈ ℙ)
2 simp2l 1195 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
3 simp3 1134 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
4 znq 12353 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
52, 3, 4syl2anc 586 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
62zcnd 12089 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
73nncnd 11654 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
8 simp2r 1196 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ≠ 0)
93nnne0d 11688 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0)
106, 7, 8, 9divne0d 11432 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≠ 0)
11 eqid 2821 . . . 4 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
12 eqid 2821 . . . 4 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
1311, 12pcval 16181 . . 3 ((𝑃 ∈ ℙ ∧ ((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / 𝐵) ≠ 0)) → (𝑃 pCnt (𝐴 / 𝐵)) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
141, 5, 10, 13syl12anc 834 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
15 eqid 2821 . . . . . . . 8 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < )
1615pczpre 16184 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ))
17163adant3 1128 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ))
18 nnz 12005 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
19 nnne0 11672 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
2018, 19jca 514 . . . . . . . 8 (𝐵 ∈ ℕ → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
21 eqid 2821 . . . . . . . . 9 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )
2221pczpre 16184 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
2320, 22sylan2 594 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
24233adant2 1127 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
2517, 24oveq12d 7174 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))
26 eqid 2821 . . . . 5 (𝐴 / 𝐵) = (𝐴 / 𝐵)
2725, 26jctil 522 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))))
28 oveq1 7163 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 / 𝑦) = (𝐴 / 𝑦))
2928eqeq2d 2832 . . . . . 6 (𝑥 = 𝐴 → ((𝐴 / 𝐵) = (𝑥 / 𝑦) ↔ (𝐴 / 𝐵) = (𝐴 / 𝑦)))
30 breq2 5070 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑃𝑛) ∥ 𝑥 ↔ (𝑃𝑛) ∥ 𝐴))
3130rabbidv 3480 . . . . . . . . 9 (𝑥 = 𝐴 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴})
3231supeq1d 8910 . . . . . . . 8 (𝑥 = 𝐴 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ))
3332oveq1d 7171 . . . . . . 7 (𝑥 = 𝐴 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))
3433eqeq2d 2832 . . . . . 6 (𝑥 = 𝐴 → (((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
3529, 34anbi12d 632 . . . . 5 (𝑥 = 𝐴 → (((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝐴 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
36 oveq2 7164 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
3736eqeq2d 2832 . . . . . 6 (𝑦 = 𝐵 → ((𝐴 / 𝐵) = (𝐴 / 𝑦) ↔ (𝐴 / 𝐵) = (𝐴 / 𝐵)))
38 breq2 5070 . . . . . . . . . 10 (𝑦 = 𝐵 → ((𝑃𝑛) ∥ 𝑦 ↔ (𝑃𝑛) ∥ 𝐵))
3938rabbidv 3480 . . . . . . . . 9 (𝑦 = 𝐵 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵})
4039supeq1d 8910 . . . . . . . 8 (𝑦 = 𝐵 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
4140oveq2d 7172 . . . . . . 7 (𝑦 = 𝐵 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))
4241eqeq2d 2832 . . . . . 6 (𝑦 = 𝐵 → (((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))))
4337, 42anbi12d 632 . . . . 5 (𝑦 = 𝐵 → (((𝐴 / 𝐵) = (𝐴 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))))
4435, 43rspc2ev 3635 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ∧ ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
452, 3, 27, 44syl3anc 1367 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
46 ovex 7189 . . . 4 ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) ∈ V
4711, 12pceu 16183 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / 𝐵) ≠ 0)) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
481, 5, 10, 47syl12anc 834 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
49 eqeq1 2825 . . . . . . 7 (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
5049anbi2d 630 . . . . . 6 (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
51502rexbidv 3300 . . . . 5 (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
5251iota2 6344 . . . 4 ((((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) ∈ V ∧ ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))))
5346, 48, 52sylancr 589 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))))
5445, 53mpbid 234 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)))
5514, 54eqtrd 2856 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  ∃!weu 2653  wne 3016  wrex 3139  {crab 3142  Vcvv 3494   class class class wbr 5066  cio 6312  (class class class)co 7156  supcsup 8904  cr 10536  0cc0 10537   < clt 10675  cmin 10870   / cdiv 11297  cn 11638  0cn0 11898  cz 11982  cq 12349  cexp 13430  cdvds 15607  cprime 16015   pCnt cpc 16173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844  df-prm 16016  df-pc 16174
This theorem is referenced by:  pcqmul  16190  pcqcl  16193  pcid  16209  pcneg  16210  pc2dvds  16215  pcz  16217  pcaddlem  16224  pcadd  16225  pcmpt2  16229  pcbc  16236  sylow1lem1  18723  chtublem  25787
  Copyright terms: Public domain W3C validator