Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupno Structured version   Visualization version   GIF version

Theorem nosupno 33906
Description: The next several theorems deal with a surreal "supremum". This surreal will ultimately be shown to bound 𝐴 below and bound the restriction of any surreal above. We begin by showing that the given expression actually defines a surreal number. (Contributed by Scott Fenton, 5-Dec-2021.)
Hypothesis
Ref Expression
nosupno.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupno ((𝐴 No 𝐴𝑉) → 𝑆 No )
Distinct variable group:   𝑥,𝐴,𝑦,𝑔,𝑣,𝑢
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem nosupno
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝐴𝑉𝐴 ∈ V)
2 nosupno.1 . . 3 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
3 iftrue 4465 . . . . . 6 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
43adantr 481 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
5 simprl 768 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → 𝐴 No )
6 simpl 483 . . . . . . . . 9 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
7 nomaxmo 33901 . . . . . . . . . 10 (𝐴 No → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
87ad2antrl 725 . . . . . . . . 9 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
9 reu5 3361 . . . . . . . . 9 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
106, 8, 9sylanbrc 583 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
11 riotacl 7250 . . . . . . . 8 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
1210, 11syl 17 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
135, 12sseldd 3922 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No )
14 2on 8311 . . . . . . . . 9 2o ∈ On
1514elexi 3451 . . . . . . . 8 2o ∈ V
1615prid2 4699 . . . . . . 7 2o ∈ {1o, 2o}
1716noextend 33869 . . . . . 6 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )
1813, 17syl 17 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )
194, 18eqeltrd 2839 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) ∈ No )
20 iffalse 4468 . . . . . 6 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
2120adantr 481 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
22 funmpt 6472 . . . . . . 7 Fun (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
2322a1i 11 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → Fun (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
24 iotaex 6413 . . . . . . . . 9 (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) ∈ V
25 eqid 2738 . . . . . . . . 9 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
2624, 25dmmpti 6577 . . . . . . . 8 dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
27 ssel2 3916 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝑢𝐴) → 𝑢 No )
28 nodmon 33853 . . . . . . . . . . . . . . . . 17 (𝑢 No → dom 𝑢 ∈ On)
2927, 28syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 No 𝑢𝐴) → dom 𝑢 ∈ On)
30 onss 7634 . . . . . . . . . . . . . . . 16 (dom 𝑢 ∈ On → dom 𝑢 ⊆ On)
3129, 30syl 17 . . . . . . . . . . . . . . 15 ((𝐴 No 𝑢𝐴) → dom 𝑢 ⊆ On)
3231sseld 3920 . . . . . . . . . . . . . 14 ((𝐴 No 𝑢𝐴) → (𝑦 ∈ dom 𝑢𝑦 ∈ On))
3332adantrd 492 . . . . . . . . . . . . 13 ((𝐴 No 𝑢𝐴) → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ On))
3433rexlimdva 3213 . . . . . . . . . . . 12 (𝐴 No → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ On))
3534abssdv 4002 . . . . . . . . . . 11 (𝐴 No → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ On)
36 simplr 766 . . . . . . . . . . . . . . . . . . 19 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → 𝑎𝑏)
3729adantlr 712 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → dom 𝑢 ∈ On)
38 ontr1 6312 . . . . . . . . . . . . . . . . . . . 20 (dom 𝑢 ∈ On → ((𝑎𝑏𝑏 ∈ dom 𝑢) → 𝑎 ∈ dom 𝑢))
3937, 38syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → ((𝑎𝑏𝑏 ∈ dom 𝑢) → 𝑎 ∈ dom 𝑢))
4036, 39mpand 692 . . . . . . . . . . . . . . . . . 18 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → (𝑏 ∈ dom 𝑢𝑎 ∈ dom 𝑢))
4140adantrd 492 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → 𝑎 ∈ dom 𝑢))
42 reseq1 5885 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) → ((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎))
43 onelon 6291 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((dom 𝑢 ∈ On ∧ 𝑏 ∈ dom 𝑢) → 𝑏 ∈ On)
4437, 43sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → 𝑏 ∈ On)
45 suceloni 7659 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 ∈ On → suc 𝑏 ∈ On)
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑏 ∈ On)
47 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → 𝑎𝑏)
48 eloni 6276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ On → Ord 𝑏)
4944, 48syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → Ord 𝑏)
50 ordsucelsuc 7669 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Ord 𝑏 → (𝑎𝑏 ↔ suc 𝑎 ∈ suc 𝑏))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → (𝑎𝑏 ↔ suc 𝑎 ∈ suc 𝑏))
5247, 51mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑎 ∈ suc 𝑏)
53 onelss 6308 . . . . . . . . . . . . . . . . . . . . . . . 24 (suc 𝑏 ∈ On → (suc 𝑎 ∈ suc 𝑏 → suc 𝑎 ⊆ suc 𝑏))
5446, 52, 53sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑎 ⊆ suc 𝑏)
5554resabs1d 5922 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = (𝑢 ↾ suc 𝑎))
5654resabs1d 5922 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))
5755, 56eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → (((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎) ↔ (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
5842, 57syl5ib 243 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
5958imim2d 57 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) → (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
6059ralimdv 3109 . . . . . . . . . . . . . . . . . 18 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) → ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
6160expimpd 454 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
6241, 61jcad 513 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
6362reximdva 3203 . . . . . . . . . . . . . . 15 ((𝐴 No 𝑎𝑏) → (∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → ∃𝑢𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
6463expimpd 454 . . . . . . . . . . . . . 14 (𝐴 No → ((𝑎𝑏 ∧ ∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) → ∃𝑢𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
65 vex 3436 . . . . . . . . . . . . . . . 16 𝑏 ∈ V
66 eleq1w 2821 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (𝑦 ∈ dom 𝑢𝑏 ∈ dom 𝑢))
67 suceq 6331 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑏 → suc 𝑦 = suc 𝑏)
6867reseq2d 5891 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑏))
6967reseq2d 5891 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑏))
7068, 69eqeq12d 2754 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))
7170imbi2d 341 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
7271ralbidv 3112 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
7366, 72anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))))
7473rexbidv 3226 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))))
7565, 74elab 3609 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
7675anbi2i 623 . . . . . . . . . . . . . 14 ((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) ↔ (𝑎𝑏 ∧ ∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))))
77 vex 3436 . . . . . . . . . . . . . . 15 𝑎 ∈ V
78 eleq1w 2821 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑎 → (𝑦 ∈ dom 𝑢𝑎 ∈ dom 𝑢))
79 suceq 6331 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑎 → suc 𝑦 = suc 𝑎)
8079reseq2d 5891 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑎 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑎))
8179reseq2d 5891 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑎 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑎))
8280, 81eqeq12d 2754 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑎 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
8382imbi2d 341 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑎 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8483ralbidv 3112 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑎 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8578, 84anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
8685rexbidv 3226 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
8777, 86elab 3609 . . . . . . . . . . . . . 14 (𝑎 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8864, 76, 873imtr4g 296 . . . . . . . . . . . . 13 (𝐴 No → ((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
8988alrimivv 1931 . . . . . . . . . . . 12 (𝐴 No → ∀𝑎𝑏((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
90 dftr2 5193 . . . . . . . . . . . 12 (Tr {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∀𝑎𝑏((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
9189, 90sylibr 233 . . . . . . . . . . 11 (𝐴 No → Tr {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
92 dford5 33671 . . . . . . . . . . 11 (Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ({𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ On ∧ Tr {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
9335, 91, 92sylanbrc 583 . . . . . . . . . 10 (𝐴 No → Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
9493adantr 481 . . . . . . . . 9 ((𝐴 No 𝐴 ∈ V) → Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
95 bdayfo 33880 . . . . . . . . . . . . . . 15 bday : No onto→On
96 fofun 6689 . . . . . . . . . . . . . . 15 ( bday : No onto→On → Fun bday )
9795, 96ax-mp 5 . . . . . . . . . . . . . 14 Fun bday
98 funimaexg 6520 . . . . . . . . . . . . . 14 ((Fun bday 𝐴 ∈ V) → ( bday 𝐴) ∈ V)
9997, 98mpan 687 . . . . . . . . . . . . 13 (𝐴 ∈ V → ( bday 𝐴) ∈ V)
10099uniexd 7595 . . . . . . . . . . . 12 (𝐴 ∈ V → ( bday 𝐴) ∈ V)
101100adantl 482 . . . . . . . . . . 11 ((𝐴 No 𝐴 ∈ V) → ( bday 𝐴) ∈ V)
102 simpl 483 . . . . . . . . . . . . . 14 ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ dom 𝑢)
103102reximi 3178 . . . . . . . . . . . . 13 (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → ∃𝑢𝐴 𝑦 ∈ dom 𝑢)
104103ss2abi 4000 . . . . . . . . . . . 12 {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ {𝑦 ∣ ∃𝑢𝐴 𝑦 ∈ dom 𝑢}
105 bdayval 33851 . . . . . . . . . . . . . . . . . . 19 (𝑢 No → ( bday 𝑢) = dom 𝑢)
10627, 105syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑢𝐴) → ( bday 𝑢) = dom 𝑢)
107 fofn 6690 . . . . . . . . . . . . . . . . . . . 20 ( bday : No onto→On → bday Fn No )
10895, 107ax-mp 5 . . . . . . . . . . . . . . . . . . 19 bday Fn No
109 fnfvima 7109 . . . . . . . . . . . . . . . . . . 19 (( bday Fn No 𝐴 No 𝑢𝐴) → ( bday 𝑢) ∈ ( bday 𝐴))
110108, 109mp3an1 1447 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑢𝐴) → ( bday 𝑢) ∈ ( bday 𝐴))
111106, 110eqeltrrd 2840 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝑢𝐴) → dom 𝑢 ∈ ( bday 𝐴))
112 elssuni 4871 . . . . . . . . . . . . . . . . 17 (dom 𝑢 ∈ ( bday 𝐴) → dom 𝑢 ( bday 𝐴))
113111, 112syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 No 𝑢𝐴) → dom 𝑢 ( bday 𝐴))
114113sseld 3920 . . . . . . . . . . . . . . 15 ((𝐴 No 𝑢𝐴) → (𝑦 ∈ dom 𝑢𝑦 ( bday 𝐴)))
115114rexlimdva 3213 . . . . . . . . . . . . . 14 (𝐴 No → (∃𝑢𝐴 𝑦 ∈ dom 𝑢𝑦 ( bday 𝐴)))
116115abssdv 4002 . . . . . . . . . . . . 13 (𝐴 No → {𝑦 ∣ ∃𝑢𝐴 𝑦 ∈ dom 𝑢} ⊆ ( bday 𝐴))
117116adantr 481 . . . . . . . . . . . 12 ((𝐴 No 𝐴 ∈ V) → {𝑦 ∣ ∃𝑢𝐴 𝑦 ∈ dom 𝑢} ⊆ ( bday 𝐴))
118104, 117sstrid 3932 . . . . . . . . . . 11 ((𝐴 No 𝐴 ∈ V) → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ ( bday 𝐴))
119101, 118ssexd 5248 . . . . . . . . . 10 ((𝐴 No 𝐴 ∈ V) → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ V)
120 elong 6274 . . . . . . . . . 10 ({𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ V → ({𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On ↔ Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
121119, 120syl 17 . . . . . . . . 9 ((𝐴 No 𝐴 ∈ V) → ({𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On ↔ Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
12294, 121mpbird 256 . . . . . . . 8 ((𝐴 No 𝐴 ∈ V) → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On)
12326, 122eqeltrid 2843 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ On)
124123adantl 482 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ On)
12525rnmpt 5864 . . . . . . . 8 ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑧 ∣ ∃𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))}
126 vex 3436 . . . . . . . . . . . 12 𝑔 ∈ V
127 eleq1w 2821 . . . . . . . . . . . . . 14 (𝑦 = 𝑔 → (𝑦 ∈ dom 𝑢𝑔 ∈ dom 𝑢))
128 suceq 6331 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑔 → suc 𝑦 = suc 𝑔)
129128reseq2d 5891 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑔 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑔))
130128reseq2d 5891 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑔 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑔))
131129, 130eqeq12d 2754 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑔 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
132131imbi2d 341 . . . . . . . . . . . . . . 15 (𝑦 = 𝑔 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
133132ralbidv 3112 . . . . . . . . . . . . . 14 (𝑦 = 𝑔 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
134127, 133anbi12d 631 . . . . . . . . . . . . 13 (𝑦 = 𝑔 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))))
135134rexbidv 3226 . . . . . . . . . . . 12 (𝑦 = 𝑔 → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))))
136126, 135elab 3609 . . . . . . . . . . 11 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
137 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑔) = (𝑢𝑔)
138 fvex 6787 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝑔) ∈ V
139 eqeq2 2750 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑢𝑔) → ((𝑢𝑔) = 𝑥 ↔ (𝑢𝑔) = (𝑢𝑔)))
1401393anbi3d 1441 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑢𝑔) → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = (𝑢𝑔))))
141138, 140spcev 3545 . . . . . . . . . . . . . . . . . . 19 ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = (𝑢𝑔)) → ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
142137, 141mp3an3 1449 . . . . . . . . . . . . . . . . . 18 ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
143142reximi 3178 . . . . . . . . . . . . . . . . 17 (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑢𝐴𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
144 rexcom4 3233 . . . . . . . . . . . . . . . . 17 (∃𝑢𝐴𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ ∃𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
145143, 144sylib 217 . . . . . . . . . . . . . . . 16 (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
146145adantl 482 . . . . . . . . . . . . . . 15 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
147 nosupprefixmo 33903 . . . . . . . . . . . . . . . 16 (𝐴 No → ∃*𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
148147adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃*𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
149 df-eu 2569 . . . . . . . . . . . . . . 15 (∃!𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ (∃𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ∧ ∃*𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
150146, 148, 149sylanbrc 583 . . . . . . . . . . . . . 14 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃!𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
151 vex 3436 . . . . . . . . . . . . . . 15 𝑧 ∈ V
152 eqeq2 2750 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝑢𝑔) = 𝑥 ↔ (𝑢𝑔) = 𝑧))
1531523anbi3d 1441 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧)))
154153rexbidv 3226 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧)))
155154iota2 6422 . . . . . . . . . . . . . . 15 ((𝑧 ∈ V ∧ ∃!𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧))
156151, 155mpan 687 . . . . . . . . . . . . . 14 (∃!𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧))
157150, 156syl 17 . . . . . . . . . . . . 13 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧))
158 eqcom 2745 . . . . . . . . . . . . 13 ((℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
159157, 158bitrdi 287 . . . . . . . . . . . 12 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ 𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
160 simprr3 1222 . . . . . . . . . . . . . . 15 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → (𝑢𝑔) = 𝑧)
16127adantrr 714 . . . . . . . . . . . . . . . . 17 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → 𝑢 No )
162 norn 33854 . . . . . . . . . . . . . . . . 17 (𝑢 No → ran 𝑢 ⊆ {1o, 2o})
163161, 162syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → ran 𝑢 ⊆ {1o, 2o})
164 nofun 33852 . . . . . . . . . . . . . . . . . 18 (𝑢 No → Fun 𝑢)
165161, 164syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → Fun 𝑢)
166 simprr1 1220 . . . . . . . . . . . . . . . . 17 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → 𝑔 ∈ dom 𝑢)
167 fvelrn 6954 . . . . . . . . . . . . . . . . 17 ((Fun 𝑢𝑔 ∈ dom 𝑢) → (𝑢𝑔) ∈ ran 𝑢)
168165, 166, 167syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → (𝑢𝑔) ∈ ran 𝑢)
169163, 168sseldd 3922 . . . . . . . . . . . . . . 15 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → (𝑢𝑔) ∈ {1o, 2o})
170160, 169eqeltrrd 2840 . . . . . . . . . . . . . 14 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → 𝑧 ∈ {1o, 2o})
171170rexlimdvaa 3214 . . . . . . . . . . . . 13 (𝐴 No → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) → 𝑧 ∈ {1o, 2o}))
172171adantr 481 . . . . . . . . . . . 12 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) → 𝑧 ∈ {1o, 2o}))
173159, 172sylbird 259 . . . . . . . . . . 11 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → 𝑧 ∈ {1o, 2o}))
174136, 173sylan2b 594 . . . . . . . . . 10 ((𝐴 No 𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → (𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → 𝑧 ∈ {1o, 2o}))
175174rexlimdva 3213 . . . . . . . . 9 (𝐴 No → (∃𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → 𝑧 ∈ {1o, 2o}))
176175abssdv 4002 . . . . . . . 8 (𝐴 No → {𝑧 ∣ ∃𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))} ⊆ {1o, 2o})
177125, 176eqsstrid 3969 . . . . . . 7 (𝐴 No → ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ⊆ {1o, 2o})
178177ad2antrl 725 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ⊆ {1o, 2o})
179 elno2 33857 . . . . . 6 ((𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ No ↔ (Fun (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∧ dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ On ∧ ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ⊆ {1o, 2o}))
18023, 124, 178, 179syl3anbrc 1342 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ No )
18121, 180eqeltrd 2839 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) ∈ No )
18219, 181pm2.61ian 809 . . 3 ((𝐴 No 𝐴 ∈ V) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) ∈ No )
1832, 182eqeltrid 2843 . 2 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
1841, 183sylan2 593 1 ((𝐴 No 𝐴𝑉) → 𝑆 No )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086  wal 1537   = wceq 1539  wex 1782  wcel 2106  ∃*wmo 2538  ∃!weu 2568  {cab 2715  wral 3064  wrex 3065  ∃!wreu 3066  ∃*wrmo 3067  Vcvv 3432  cun 3885  wss 3887  ifcif 4459  {csn 4561  {cpr 4563  cop 4567   cuni 4839   class class class wbr 5074  cmpt 5157  Tr wtr 5191  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Ord word 6265  Oncon0 6266  suc csuc 6268  cio 6389  Fun wfun 6427   Fn wfn 6428  ontowfo 6431  cfv 6433  crio 7231  1oc1o 8290  2oc2o 8291   No csur 33843   <s cslt 33844   bday cbday 33845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848
This theorem is referenced by:  nosupbday  33908  nosupres  33910  nosupbnd1lem1  33911  nosupbnd1lem2  33912  nosupbnd1lem3  33913  nosupbnd1lem4  33914  nosupbnd1lem5  33915  nosupbnd1lem6  33916  nosupbnd2  33919  nosupinfsep  33935  noetasuplem1  33936  noetasuplem2  33937  noetasuplem3  33938  noetasuplem4  33939  noetalem1  33944
  Copyright terms: Public domain W3C validator