MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupno Structured version   Visualization version   GIF version

Theorem nosupno 27648
Description: The next several theorems deal with a surreal "supremum". This surreal will ultimately be shown to bound 𝐴 below and bound the restriction of any surreal above. We begin by showing that the given expression actually defines a surreal number. (Contributed by Scott Fenton, 5-Dec-2021.)
Hypothesis
Ref Expression
nosupno.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupno ((𝐴 No 𝐴𝑉) → 𝑆 No )
Distinct variable group:   𝑥,𝐴,𝑦,𝑔,𝑣,𝑢
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem nosupno
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3465 . 2 (𝐴𝑉𝐴 ∈ V)
2 nosupno.1 . . 3 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
3 iftrue 4490 . . . . . 6 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
43adantr 480 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
5 simprl 770 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → 𝐴 No )
6 simpl 482 . . . . . . . . 9 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
7 nomaxmo 27643 . . . . . . . . . 10 (𝐴 No → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
87ad2antrl 728 . . . . . . . . 9 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
9 reu5 3353 . . . . . . . . 9 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
106, 8, 9sylanbrc 583 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
11 riotacl 7343 . . . . . . . 8 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
1210, 11syl 17 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
135, 12sseldd 3944 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No )
14 2on 8424 . . . . . . . . 9 2o ∈ On
1514elexi 3467 . . . . . . . 8 2o ∈ V
1615prid2 4723 . . . . . . 7 2o ∈ {1o, 2o}
1716noextend 27611 . . . . . 6 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )
1813, 17syl 17 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )
194, 18eqeltrd 2828 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) ∈ No )
20 iffalse 4493 . . . . . 6 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
2120adantr 480 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
22 funmpt 6538 . . . . . . 7 Fun (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
2322a1i 11 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → Fun (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
24 iotaex 6472 . . . . . . . . 9 (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) ∈ V
25 eqid 2729 . . . . . . . . 9 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
2624, 25dmmpti 6644 . . . . . . . 8 dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
27 ssel2 3938 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝑢𝐴) → 𝑢 No )
28 nodmon 27595 . . . . . . . . . . . . . . . . 17 (𝑢 No → dom 𝑢 ∈ On)
2927, 28syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 No 𝑢𝐴) → dom 𝑢 ∈ On)
30 onss 7741 . . . . . . . . . . . . . . . 16 (dom 𝑢 ∈ On → dom 𝑢 ⊆ On)
3129, 30syl 17 . . . . . . . . . . . . . . 15 ((𝐴 No 𝑢𝐴) → dom 𝑢 ⊆ On)
3231sseld 3942 . . . . . . . . . . . . . 14 ((𝐴 No 𝑢𝐴) → (𝑦 ∈ dom 𝑢𝑦 ∈ On))
3332adantrd 491 . . . . . . . . . . . . 13 ((𝐴 No 𝑢𝐴) → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ On))
3433rexlimdva 3134 . . . . . . . . . . . 12 (𝐴 No → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ On))
3534abssdv 4028 . . . . . . . . . . 11 (𝐴 No → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ On)
36 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → 𝑎𝑏)
3729adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → dom 𝑢 ∈ On)
38 ontr1 6367 . . . . . . . . . . . . . . . . . . . 20 (dom 𝑢 ∈ On → ((𝑎𝑏𝑏 ∈ dom 𝑢) → 𝑎 ∈ dom 𝑢))
3937, 38syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → ((𝑎𝑏𝑏 ∈ dom 𝑢) → 𝑎 ∈ dom 𝑢))
4036, 39mpand 695 . . . . . . . . . . . . . . . . . 18 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → (𝑏 ∈ dom 𝑢𝑎 ∈ dom 𝑢))
4140adantrd 491 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → 𝑎 ∈ dom 𝑢))
42 reseq1 5933 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) → ((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎))
43 onelon 6345 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((dom 𝑢 ∈ On ∧ 𝑏 ∈ dom 𝑢) → 𝑏 ∈ On)
4437, 43sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → 𝑏 ∈ On)
45 onsuc 7767 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 ∈ On → suc 𝑏 ∈ On)
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑏 ∈ On)
47 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → 𝑎𝑏)
48 eloni 6330 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ On → Ord 𝑏)
4944, 48syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → Ord 𝑏)
50 ordsucelsuc 7777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Ord 𝑏 → (𝑎𝑏 ↔ suc 𝑎 ∈ suc 𝑏))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → (𝑎𝑏 ↔ suc 𝑎 ∈ suc 𝑏))
5247, 51mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑎 ∈ suc 𝑏)
53 onelss 6362 . . . . . . . . . . . . . . . . . . . . . . . 24 (suc 𝑏 ∈ On → (suc 𝑎 ∈ suc 𝑏 → suc 𝑎 ⊆ suc 𝑏))
5446, 52, 53sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑎 ⊆ suc 𝑏)
5554resabs1d 5968 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = (𝑢 ↾ suc 𝑎))
5654resabs1d 5968 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))
5755, 56eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → (((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎) ↔ (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
5842, 57imbitrid 244 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
5958imim2d 57 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) → (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
6059ralimdv 3147 . . . . . . . . . . . . . . . . . 18 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) → ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
6160expimpd 453 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
6241, 61jcad 512 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
6362reximdva 3146 . . . . . . . . . . . . . . 15 ((𝐴 No 𝑎𝑏) → (∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → ∃𝑢𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
6463expimpd 453 . . . . . . . . . . . . . 14 (𝐴 No → ((𝑎𝑏 ∧ ∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) → ∃𝑢𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
65 vex 3448 . . . . . . . . . . . . . . . 16 𝑏 ∈ V
66 eleq1w 2811 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (𝑦 ∈ dom 𝑢𝑏 ∈ dom 𝑢))
67 suceq 6388 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑏 → suc 𝑦 = suc 𝑏)
6867reseq2d 5939 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑏))
6967reseq2d 5939 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑏))
7068, 69eqeq12d 2745 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))
7170imbi2d 340 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
7271ralbidv 3156 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
7366, 72anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))))
7473rexbidv 3157 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))))
7565, 74elab 3643 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
7675anbi2i 623 . . . . . . . . . . . . . 14 ((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) ↔ (𝑎𝑏 ∧ ∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))))
77 vex 3448 . . . . . . . . . . . . . . 15 𝑎 ∈ V
78 eleq1w 2811 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑎 → (𝑦 ∈ dom 𝑢𝑎 ∈ dom 𝑢))
79 suceq 6388 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑎 → suc 𝑦 = suc 𝑎)
8079reseq2d 5939 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑎 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑎))
8179reseq2d 5939 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑎 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑎))
8280, 81eqeq12d 2745 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑎 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
8382imbi2d 340 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑎 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8483ralbidv 3156 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑎 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8578, 84anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
8685rexbidv 3157 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
8777, 86elab 3643 . . . . . . . . . . . . . 14 (𝑎 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8864, 76, 873imtr4g 296 . . . . . . . . . . . . 13 (𝐴 No → ((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
8988alrimivv 1928 . . . . . . . . . . . 12 (𝐴 No → ∀𝑎𝑏((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
90 dftr2 5211 . . . . . . . . . . . 12 (Tr {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∀𝑎𝑏((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
9189, 90sylibr 234 . . . . . . . . . . 11 (𝐴 No → Tr {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
92 dford5 7740 . . . . . . . . . . 11 (Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ({𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ On ∧ Tr {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
9335, 91, 92sylanbrc 583 . . . . . . . . . 10 (𝐴 No → Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
9493adantr 480 . . . . . . . . 9 ((𝐴 No 𝐴 ∈ V) → Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
95 bdayfo 27622 . . . . . . . . . . . . . . 15 bday : No onto→On
96 fofun 6755 . . . . . . . . . . . . . . 15 ( bday : No onto→On → Fun bday )
9795, 96ax-mp 5 . . . . . . . . . . . . . 14 Fun bday
98 funimaexg 6587 . . . . . . . . . . . . . 14 ((Fun bday 𝐴 ∈ V) → ( bday 𝐴) ∈ V)
9997, 98mpan 690 . . . . . . . . . . . . 13 (𝐴 ∈ V → ( bday 𝐴) ∈ V)
10099uniexd 7698 . . . . . . . . . . . 12 (𝐴 ∈ V → ( bday 𝐴) ∈ V)
101100adantl 481 . . . . . . . . . . 11 ((𝐴 No 𝐴 ∈ V) → ( bday 𝐴) ∈ V)
102 simpl 482 . . . . . . . . . . . . . 14 ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ dom 𝑢)
103102reximi 3067 . . . . . . . . . . . . 13 (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → ∃𝑢𝐴 𝑦 ∈ dom 𝑢)
104103ss2abi 4027 . . . . . . . . . . . 12 {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ {𝑦 ∣ ∃𝑢𝐴 𝑦 ∈ dom 𝑢}
105 bdayval 27593 . . . . . . . . . . . . . . . . . . 19 (𝑢 No → ( bday 𝑢) = dom 𝑢)
10627, 105syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑢𝐴) → ( bday 𝑢) = dom 𝑢)
107 fofn 6756 . . . . . . . . . . . . . . . . . . . 20 ( bday : No onto→On → bday Fn No )
10895, 107ax-mp 5 . . . . . . . . . . . . . . . . . . 19 bday Fn No
109 fnfvima 7189 . . . . . . . . . . . . . . . . . . 19 (( bday Fn No 𝐴 No 𝑢𝐴) → ( bday 𝑢) ∈ ( bday 𝐴))
110108, 109mp3an1 1450 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑢𝐴) → ( bday 𝑢) ∈ ( bday 𝐴))
111106, 110eqeltrrd 2829 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝑢𝐴) → dom 𝑢 ∈ ( bday 𝐴))
112 elssuni 4897 . . . . . . . . . . . . . . . . 17 (dom 𝑢 ∈ ( bday 𝐴) → dom 𝑢 ( bday 𝐴))
113111, 112syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 No 𝑢𝐴) → dom 𝑢 ( bday 𝐴))
114113sseld 3942 . . . . . . . . . . . . . . 15 ((𝐴 No 𝑢𝐴) → (𝑦 ∈ dom 𝑢𝑦 ( bday 𝐴)))
115114rexlimdva 3134 . . . . . . . . . . . . . 14 (𝐴 No → (∃𝑢𝐴 𝑦 ∈ dom 𝑢𝑦 ( bday 𝐴)))
116115abssdv 4028 . . . . . . . . . . . . 13 (𝐴 No → {𝑦 ∣ ∃𝑢𝐴 𝑦 ∈ dom 𝑢} ⊆ ( bday 𝐴))
117116adantr 480 . . . . . . . . . . . 12 ((𝐴 No 𝐴 ∈ V) → {𝑦 ∣ ∃𝑢𝐴 𝑦 ∈ dom 𝑢} ⊆ ( bday 𝐴))
118104, 117sstrid 3955 . . . . . . . . . . 11 ((𝐴 No 𝐴 ∈ V) → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ ( bday 𝐴))
119101, 118ssexd 5274 . . . . . . . . . 10 ((𝐴 No 𝐴 ∈ V) → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ V)
120 elong 6328 . . . . . . . . . 10 ({𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ V → ({𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On ↔ Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
121119, 120syl 17 . . . . . . . . 9 ((𝐴 No 𝐴 ∈ V) → ({𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On ↔ Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
12294, 121mpbird 257 . . . . . . . 8 ((𝐴 No 𝐴 ∈ V) → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On)
12326, 122eqeltrid 2832 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ On)
124123adantl 481 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ On)
12525rnmpt 5910 . . . . . . . 8 ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑧 ∣ ∃𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))}
126 vex 3448 . . . . . . . . . . . 12 𝑔 ∈ V
127 eleq1w 2811 . . . . . . . . . . . . . 14 (𝑦 = 𝑔 → (𝑦 ∈ dom 𝑢𝑔 ∈ dom 𝑢))
128 suceq 6388 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑔 → suc 𝑦 = suc 𝑔)
129128reseq2d 5939 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑔 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑔))
130128reseq2d 5939 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑔 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑔))
131129, 130eqeq12d 2745 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑔 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
132131imbi2d 340 . . . . . . . . . . . . . . 15 (𝑦 = 𝑔 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
133132ralbidv 3156 . . . . . . . . . . . . . 14 (𝑦 = 𝑔 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
134127, 133anbi12d 632 . . . . . . . . . . . . 13 (𝑦 = 𝑔 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))))
135134rexbidv 3157 . . . . . . . . . . . 12 (𝑦 = 𝑔 → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))))
136126, 135elab 3643 . . . . . . . . . . 11 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
137 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑔) = (𝑢𝑔)
138 fvex 6853 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝑔) ∈ V
139 eqeq2 2741 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑢𝑔) → ((𝑢𝑔) = 𝑥 ↔ (𝑢𝑔) = (𝑢𝑔)))
1401393anbi3d 1444 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑢𝑔) → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = (𝑢𝑔))))
141138, 140spcev 3569 . . . . . . . . . . . . . . . . . . 19 ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = (𝑢𝑔)) → ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
142137, 141mp3an3 1452 . . . . . . . . . . . . . . . . . 18 ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
143142reximi 3067 . . . . . . . . . . . . . . . . 17 (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑢𝐴𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
144 rexcom4 3262 . . . . . . . . . . . . . . . . 17 (∃𝑢𝐴𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ ∃𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
145143, 144sylib 218 . . . . . . . . . . . . . . . 16 (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
146145adantl 481 . . . . . . . . . . . . . . 15 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
147 nosupprefixmo 27645 . . . . . . . . . . . . . . . 16 (𝐴 No → ∃*𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
148147adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃*𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
149 df-eu 2562 . . . . . . . . . . . . . . 15 (∃!𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ (∃𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ∧ ∃*𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
150146, 148, 149sylanbrc 583 . . . . . . . . . . . . . 14 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃!𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
151 vex 3448 . . . . . . . . . . . . . . 15 𝑧 ∈ V
152 eqeq2 2741 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝑢𝑔) = 𝑥 ↔ (𝑢𝑔) = 𝑧))
1531523anbi3d 1444 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧)))
154153rexbidv 3157 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧)))
155154iota2 6488 . . . . . . . . . . . . . . 15 ((𝑧 ∈ V ∧ ∃!𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧))
156151, 155mpan 690 . . . . . . . . . . . . . 14 (∃!𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧))
157150, 156syl 17 . . . . . . . . . . . . 13 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧))
158 eqcom 2736 . . . . . . . . . . . . 13 ((℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
159157, 158bitrdi 287 . . . . . . . . . . . 12 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ 𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
160 simprr3 1224 . . . . . . . . . . . . . . 15 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → (𝑢𝑔) = 𝑧)
16127adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → 𝑢 No )
162 norn 27596 . . . . . . . . . . . . . . . . 17 (𝑢 No → ran 𝑢 ⊆ {1o, 2o})
163161, 162syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → ran 𝑢 ⊆ {1o, 2o})
164 nofun 27594 . . . . . . . . . . . . . . . . . 18 (𝑢 No → Fun 𝑢)
165161, 164syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → Fun 𝑢)
166 simprr1 1222 . . . . . . . . . . . . . . . . 17 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → 𝑔 ∈ dom 𝑢)
167 fvelrn 7030 . . . . . . . . . . . . . . . . 17 ((Fun 𝑢𝑔 ∈ dom 𝑢) → (𝑢𝑔) ∈ ran 𝑢)
168165, 166, 167syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → (𝑢𝑔) ∈ ran 𝑢)
169163, 168sseldd 3944 . . . . . . . . . . . . . . 15 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → (𝑢𝑔) ∈ {1o, 2o})
170160, 169eqeltrrd 2829 . . . . . . . . . . . . . 14 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → 𝑧 ∈ {1o, 2o})
171170rexlimdvaa 3135 . . . . . . . . . . . . 13 (𝐴 No → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) → 𝑧 ∈ {1o, 2o}))
172171adantr 480 . . . . . . . . . . . 12 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) → 𝑧 ∈ {1o, 2o}))
173159, 172sylbird 260 . . . . . . . . . . 11 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → 𝑧 ∈ {1o, 2o}))
174136, 173sylan2b 594 . . . . . . . . . 10 ((𝐴 No 𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → (𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → 𝑧 ∈ {1o, 2o}))
175174rexlimdva 3134 . . . . . . . . 9 (𝐴 No → (∃𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → 𝑧 ∈ {1o, 2o}))
176175abssdv 4028 . . . . . . . 8 (𝐴 No → {𝑧 ∣ ∃𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))} ⊆ {1o, 2o})
177125, 176eqsstrid 3982 . . . . . . 7 (𝐴 No → ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ⊆ {1o, 2o})
178177ad2antrl 728 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ⊆ {1o, 2o})
179 elno2 27599 . . . . . 6 ((𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ No ↔ (Fun (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∧ dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ On ∧ ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ⊆ {1o, 2o}))
18023, 124, 178, 179syl3anbrc 1344 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ No )
18121, 180eqeltrd 2828 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) ∈ No )
18219, 181pm2.61ian 811 . . 3 ((𝐴 No 𝐴 ∈ V) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) ∈ No )
1832, 182eqeltrid 2832 . 2 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
1841, 183sylan2 593 1 ((𝐴 No 𝐴𝑉) → 𝑆 No )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  ∃!weu 2561  {cab 2707  wral 3044  wrex 3053  ∃!wreu 3349  ∃*wrmo 3350  Vcvv 3444  cun 3909  wss 3911  ifcif 4484  {csn 4585  {cpr 4587  cop 4591   cuni 4867   class class class wbr 5102  cmpt 5183  Tr wtr 5209  dom cdm 5631  ran crn 5632  cres 5633  cima 5634  Ord word 6319  Oncon0 6320  suc csuc 6322  cio 6450  Fun wfun 6493   Fn wfn 6494  ontowfo 6497  cfv 6499  crio 7325  1oc1o 8404  2oc2o 8405   No csur 27584   <s cslt 27585   bday cbday 27586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-riota 7326  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589
This theorem is referenced by:  nosupbday  27650  nosupres  27652  nosupbnd1lem1  27653  nosupbnd1lem2  27654  nosupbnd1lem3  27655  nosupbnd1lem4  27656  nosupbnd1lem5  27657  nosupbnd1lem6  27658  nosupbnd2  27661  nosupinfsep  27677  noetasuplem1  27678  noetasuplem2  27679  noetasuplem3  27680  noetasuplem4  27681  noetalem1  27686
  Copyright terms: Public domain W3C validator