Step | Hyp | Ref
| Expression |
1 | | elex 3450 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
2 | | nosupno.1 |
. . 3
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
3 | | iftrue 4465 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
4 | 3 | adantr 481 |
. . . . 5
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
5 | | simprl 768 |
. . . . . . 7
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
𝐴 ⊆ No ) |
6 | | simpl 483 |
. . . . . . . . 9
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
7 | | nomaxmo 33901 |
. . . . . . . . . 10
⊢ (𝐴 ⊆
No → ∃*𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
8 | 7 | ad2antrl 725 |
. . . . . . . . 9
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
9 | | reu5 3361 |
. . . . . . . . 9
⊢
(∃!𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
10 | 6, 8, 9 | sylanbrc 583 |
. . . . . . . 8
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
11 | | riotacl 7250 |
. . . . . . . 8
⊢
(∃!𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴) |
12 | 10, 11 | syl 17 |
. . . . . . 7
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴) |
13 | 5, 12 | sseldd 3922 |
. . . . . 6
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ No
) |
14 | | 2on 8311 |
. . . . . . . . 9
⊢
2o ∈ On |
15 | 14 | elexi 3451 |
. . . . . . . 8
⊢
2o ∈ V |
16 | 15 | prid2 4699 |
. . . . . . 7
⊢
2o ∈ {1o, 2o} |
17 | 16 | noextend 33869 |
. . . . . 6
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ No
→ ((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) ∈ No ) |
18 | 13, 17 | syl 17 |
. . . . 5
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
((℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) ∈ No ) |
19 | 4, 18 | eqeltrd 2839 |
. . . 4
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ∈ No
) |
20 | | iffalse 4468 |
. . . . . 6
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
21 | 20 | adantr 481 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
22 | | funmpt 6472 |
. . . . . . 7
⊢ Fun
(𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
23 | 22 | a1i 11 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
Fun (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
24 | | iotaex 6413 |
. . . . . . . . 9
⊢
(℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) ∈ V |
25 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
26 | 24, 25 | dmmpti 6577 |
. . . . . . . 8
⊢ dom
(𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} |
27 | | ssel2 3916 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ⊆
No ∧ 𝑢 ∈
𝐴) → 𝑢 ∈
No ) |
28 | | nodmon 33853 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈
No → dom 𝑢
∈ On) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ⊆
No ∧ 𝑢 ∈
𝐴) → dom 𝑢 ∈ On) |
30 | | onss 7634 |
. . . . . . . . . . . . . . . 16
⊢ (dom
𝑢 ∈ On → dom
𝑢 ⊆
On) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆
No ∧ 𝑢 ∈
𝐴) → dom 𝑢 ⊆ On) |
32 | 31 | sseld 3920 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆
No ∧ 𝑢 ∈
𝐴) → (𝑦 ∈ dom 𝑢 → 𝑦 ∈ On)) |
33 | 32 | adantrd 492 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆
No ∧ 𝑢 ∈
𝐴) → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ On)) |
34 | 33 | rexlimdva 3213 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆
No → (∃𝑢
∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ On)) |
35 | 34 | abssdv 4002 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆
No → {𝑦
∣ ∃𝑢 ∈
𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ On) |
36 | | simplr 766 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) → 𝑎 ∈ 𝑏) |
37 | 29 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) → dom 𝑢 ∈ On) |
38 | | ontr1 6312 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (dom
𝑢 ∈ On → ((𝑎 ∈ 𝑏 ∧ 𝑏 ∈ dom 𝑢) → 𝑎 ∈ dom 𝑢)) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) → ((𝑎 ∈ 𝑏 ∧ 𝑏 ∈ dom 𝑢) → 𝑎 ∈ dom 𝑢)) |
40 | 36, 39 | mpand 692 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) → (𝑏 ∈ dom 𝑢 → 𝑎 ∈ dom 𝑢)) |
41 | 40 | adantrd 492 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → 𝑎 ∈ dom 𝑢)) |
42 | | reseq1 5885 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) → ((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎)) |
43 | | onelon 6291 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((dom
𝑢 ∈ On ∧ 𝑏 ∈ dom 𝑢) → 𝑏 ∈ On) |
44 | 37, 43 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) ∧ 𝑏 ∈ dom 𝑢) → 𝑏 ∈ On) |
45 | | suceloni 7659 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 ∈ On → suc 𝑏 ∈ On) |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑏 ∈ On) |
47 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) ∧ 𝑏 ∈ dom 𝑢) → 𝑎 ∈ 𝑏) |
48 | | eloni 6276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑏 ∈ On → Ord 𝑏) |
49 | 44, 48 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) ∧ 𝑏 ∈ dom 𝑢) → Ord 𝑏) |
50 | | ordsucelsuc 7669 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (Ord
𝑏 → (𝑎 ∈ 𝑏 ↔ suc 𝑎 ∈ suc 𝑏)) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) ∧ 𝑏 ∈ dom 𝑢) → (𝑎 ∈ 𝑏 ↔ suc 𝑎 ∈ suc 𝑏)) |
52 | 47, 51 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑎 ∈ suc 𝑏) |
53 | | onelss 6308 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (suc
𝑏 ∈ On → (suc
𝑎 ∈ suc 𝑏 → suc 𝑎 ⊆ suc 𝑏)) |
54 | 46, 52, 53 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑎 ⊆ suc 𝑏) |
55 | 54 | resabs1d 5922 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = (𝑢 ↾ suc 𝑎)) |
56 | 54 | resabs1d 5922 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)) |
57 | 55, 56 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) ∧ 𝑏 ∈ dom 𝑢) → (((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎) ↔ (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))) |
58 | 42, 57 | syl5ib 243 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))) |
59 | 58 | imim2d 57 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) → (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) |
60 | 59 | ralimdv 3109 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) ∧ 𝑏 ∈ dom 𝑢) → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) |
61 | 60 | expimpd 454 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) |
62 | 41, 61 | jcad 513 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) ∧ 𝑢 ∈ 𝐴) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → (𝑎 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))) |
63 | 62 | reximdva 3203 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆
No ∧ 𝑎 ∈
𝑏) → (∃𝑢 ∈ 𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → ∃𝑢 ∈ 𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))) |
64 | 63 | expimpd 454 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆
No → ((𝑎
∈ 𝑏 ∧ ∃𝑢 ∈ 𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) → ∃𝑢 ∈ 𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))) |
65 | | vex 3436 |
. . . . . . . . . . . . . . . 16
⊢ 𝑏 ∈ V |
66 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑏 → (𝑦 ∈ dom 𝑢 ↔ 𝑏 ∈ dom 𝑢)) |
67 | | suceq 6331 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑏 → suc 𝑦 = suc 𝑏) |
68 | 67 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑏 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑏)) |
69 | 67 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑏 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑏)) |
70 | 68, 69 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑏 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) |
71 | 70 | imbi2d 341 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑏 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) |
72 | 71 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑏 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) |
73 | 66, 72 | anbi12d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑏 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))) |
74 | 73 | rexbidv 3226 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑏 → (∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))) |
75 | 65, 74 | elab 3609 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) |
76 | 75 | anbi2i 623 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝑏 ∧ 𝑏 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) ↔ (𝑎 ∈ 𝑏 ∧ ∃𝑢 ∈ 𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))) |
77 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑎 ∈ V |
78 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑎 → (𝑦 ∈ dom 𝑢 ↔ 𝑎 ∈ dom 𝑢)) |
79 | | suceq 6331 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑎 → suc 𝑦 = suc 𝑎) |
80 | 79 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑎 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑎)) |
81 | 79 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑎 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑎)) |
82 | 80, 81 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑎 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))) |
83 | 82 | imbi2d 341 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑎 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) |
84 | 83 | ralbidv 3112 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑎 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) |
85 | 78, 84 | anbi12d 631 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑎 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑎 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))) |
86 | 85 | rexbidv 3226 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑎 → (∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))) |
87 | 77, 86 | elab 3609 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) |
88 | 64, 76, 87 | 3imtr4g 296 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆
No → ((𝑎
∈ 𝑏 ∧ 𝑏 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})) |
89 | 88 | alrimivv 1931 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆
No → ∀𝑎∀𝑏((𝑎 ∈ 𝑏 ∧ 𝑏 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})) |
90 | | dftr2 5193 |
. . . . . . . . . . . 12
⊢ (Tr
{𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∀𝑎∀𝑏((𝑎 ∈ 𝑏 ∧ 𝑏 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})) |
91 | 89, 90 | sylibr 233 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆
No → Tr {𝑦
∣ ∃𝑢 ∈
𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
92 | | dford5 33671 |
. . . . . . . . . . 11
⊢ (Ord
{𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ({𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ On ∧ Tr {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})) |
93 | 35, 91, 92 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (𝐴 ⊆
No → Ord {𝑦
∣ ∃𝑢 ∈
𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
94 | 93 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → Ord {𝑦 ∣
∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
95 | | bdayfo 33880 |
. . . . . . . . . . . . . . 15
⊢ bday : No –onto→On |
96 | | fofun 6689 |
. . . . . . . . . . . . . . 15
⊢ ( bday : No –onto→On → Fun
bday ) |
97 | 95, 96 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ Fun bday |
98 | | funimaexg 6520 |
. . . . . . . . . . . . . 14
⊢ ((Fun
bday ∧ 𝐴 ∈ V) → (
bday “ 𝐴)
∈ V) |
99 | 97, 98 | mpan 687 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ V → ( bday “ 𝐴) ∈ V) |
100 | 99 | uniexd 7595 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ V → ∪ ( bday “ 𝐴) ∈ V) |
101 | 100 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → ∪ ( bday
“ 𝐴) ∈
V) |
102 | | simpl 483 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ dom 𝑢) |
103 | 102 | reximi 3178 |
. . . . . . . . . . . . 13
⊢
(∃𝑢 ∈
𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → ∃𝑢 ∈ 𝐴 𝑦 ∈ dom 𝑢) |
104 | 103 | ss2abi 4000 |
. . . . . . . . . . . 12
⊢ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ {𝑦 ∣ ∃𝑢 ∈ 𝐴 𝑦 ∈ dom 𝑢} |
105 | | bdayval 33851 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈
No → ( bday ‘𝑢) = dom 𝑢) |
106 | 27, 105 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ⊆
No ∧ 𝑢 ∈
𝐴) → ( bday ‘𝑢) = dom 𝑢) |
107 | | fofn 6690 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( bday : No –onto→On → bday
Fn No ) |
108 | 95, 107 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ bday Fn No
|
109 | | fnfvima 7109 |
. . . . . . . . . . . . . . . . . . 19
⊢ (( bday Fn No ∧ 𝐴 ⊆
No ∧ 𝑢 ∈
𝐴) → ( bday ‘𝑢) ∈ ( bday
“ 𝐴)) |
110 | 108, 109 | mp3an1 1447 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ⊆
No ∧ 𝑢 ∈
𝐴) → ( bday ‘𝑢) ∈ ( bday
“ 𝐴)) |
111 | 106, 110 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ⊆
No ∧ 𝑢 ∈
𝐴) → dom 𝑢 ∈ (
bday “ 𝐴)) |
112 | | elssuni 4871 |
. . . . . . . . . . . . . . . . 17
⊢ (dom
𝑢 ∈ ( bday “ 𝐴) → dom 𝑢 ⊆ ∪ ( bday “ 𝐴)) |
113 | 111, 112 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ⊆
No ∧ 𝑢 ∈
𝐴) → dom 𝑢 ⊆ ∪ ( bday “ 𝐴)) |
114 | 113 | sseld 3920 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆
No ∧ 𝑢 ∈
𝐴) → (𝑦 ∈ dom 𝑢 → 𝑦 ∈ ∪ ( bday “ 𝐴))) |
115 | 114 | rexlimdva 3213 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆
No → (∃𝑢
∈ 𝐴 𝑦 ∈ dom 𝑢 → 𝑦 ∈ ∪ ( bday “ 𝐴))) |
116 | 115 | abssdv 4002 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆
No → {𝑦
∣ ∃𝑢 ∈
𝐴 𝑦 ∈ dom 𝑢} ⊆ ∪ ( bday “ 𝐴)) |
117 | 116 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → {𝑦 ∣
∃𝑢 ∈ 𝐴 𝑦 ∈ dom 𝑢} ⊆ ∪ ( bday “ 𝐴)) |
118 | 104, 117 | sstrid 3932 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → {𝑦 ∣
∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ ∪
( bday “ 𝐴)) |
119 | 101, 118 | ssexd 5248 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → {𝑦 ∣
∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ V) |
120 | | elong 6274 |
. . . . . . . . . 10
⊢ ({𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ V → ({𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On ↔ Ord {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})) |
121 | 119, 120 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → ({𝑦 ∣
∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On ↔ Ord {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})) |
122 | 94, 121 | mpbird 256 |
. . . . . . . 8
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → {𝑦 ∣
∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On) |
123 | 26, 122 | eqeltrid 2843 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → dom (𝑔 ∈
{𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ∈ On) |
124 | 123 | adantl 482 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
dom (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ∈ On) |
125 | 25 | rnmpt 5864 |
. . . . . . . 8
⊢ ran
(𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = {𝑧 ∣ ∃𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))} |
126 | | vex 3436 |
. . . . . . . . . . . 12
⊢ 𝑔 ∈ V |
127 | | eleq1w 2821 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑔 → (𝑦 ∈ dom 𝑢 ↔ 𝑔 ∈ dom 𝑢)) |
128 | | suceq 6331 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑔 → suc 𝑦 = suc 𝑔) |
129 | 128 | reseq2d 5891 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑔 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑔)) |
130 | 128 | reseq2d 5891 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑔 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑔)) |
131 | 129, 130 | eqeq12d 2754 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑔 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) |
132 | 131 | imbi2d 341 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑔 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) |
133 | 132 | ralbidv 3112 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑔 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) |
134 | 127, 133 | anbi12d 631 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑔 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))) |
135 | 134 | rexbidv 3226 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑔 → (∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))) |
136 | 126, 135 | elab 3609 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) |
137 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢‘𝑔) = (𝑢‘𝑔) |
138 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢‘𝑔) ∈ V |
139 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = (𝑢‘𝑔) → ((𝑢‘𝑔) = 𝑥 ↔ (𝑢‘𝑔) = (𝑢‘𝑔))) |
140 | 139 | 3anbi3d 1441 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑢‘𝑔) → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = (𝑢‘𝑔)))) |
141 | 138, 140 | spcev 3545 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = (𝑢‘𝑔)) → ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
142 | 137, 141 | mp3an3 1449 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
143 | 142 | reximi 3178 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑢 ∈
𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑢 ∈ 𝐴 ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
144 | | rexcom4 3233 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑢 ∈
𝐴 ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ ∃𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
145 | 143, 144 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑢 ∈
𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
146 | 145 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆
No ∧ ∃𝑢
∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
147 | | nosupprefixmo 33903 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆
No → ∃*𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
148 | 147 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆
No ∧ ∃𝑢
∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃*𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
149 | | df-eu 2569 |
. . . . . . . . . . . . . . 15
⊢
(∃!𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ (∃𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ∧ ∃*𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
150 | 146, 148,
149 | sylanbrc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆
No ∧ ∃𝑢
∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃!𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) |
151 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V |
152 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → ((𝑢‘𝑔) = 𝑥 ↔ (𝑢‘𝑔) = 𝑧)) |
153 | 152 | 3anbi3d 1441 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) |
154 | 153 | rexbidv 3226 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ ∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) |
155 | 154 | iota2 6422 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ V ∧ ∃!𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) → (∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧) ↔ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = 𝑧)) |
156 | 151, 155 | mpan 687 |
. . . . . . . . . . . . . 14
⊢
(∃!𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) → (∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧) ↔ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = 𝑧)) |
157 | 150, 156 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆
No ∧ ∃𝑢
∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧) ↔ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = 𝑧)) |
158 | | eqcom 2745 |
. . . . . . . . . . . . 13
⊢
((℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = 𝑧 ↔ 𝑧 = (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
159 | 157, 158 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ ∃𝑢
∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧) ↔ 𝑧 = (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
160 | | simprr3 1222 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → (𝑢‘𝑔) = 𝑧) |
161 | 27 | adantrr 714 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → 𝑢 ∈ No
) |
162 | | norn 33854 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈
No → ran 𝑢
⊆ {1o, 2o}) |
163 | 161, 162 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → ran 𝑢 ⊆ {1o,
2o}) |
164 | | nofun 33852 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈
No → Fun 𝑢) |
165 | 161, 164 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → Fun 𝑢) |
166 | | simprr1 1220 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → 𝑔 ∈ dom 𝑢) |
167 | | fvelrn 6954 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝑢 ∧ 𝑔 ∈ dom 𝑢) → (𝑢‘𝑔) ∈ ran 𝑢) |
168 | 165, 166,
167 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → (𝑢‘𝑔) ∈ ran 𝑢) |
169 | 163, 168 | sseldd 3922 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → (𝑢‘𝑔) ∈ {1o,
2o}) |
170 | 160, 169 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧))) → 𝑧 ∈ {1o,
2o}) |
171 | 170 | rexlimdvaa 3214 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆
No → (∃𝑢
∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧) → 𝑧 ∈ {1o,
2o})) |
172 | 171 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ ∃𝑢
∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑧) → 𝑧 ∈ {1o,
2o})) |
173 | 159, 172 | sylbird 259 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆
No ∧ ∃𝑢
∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑧 = (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) → 𝑧 ∈ {1o,
2o})) |
174 | 136, 173 | sylan2b 594 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆
No ∧ 𝑔 ∈
{𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → (𝑧 = (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) → 𝑧 ∈ {1o,
2o})) |
175 | 174 | rexlimdva 3213 |
. . . . . . . . 9
⊢ (𝐴 ⊆
No → (∃𝑔
∈ {𝑦 ∣
∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) → 𝑧 ∈ {1o,
2o})) |
176 | 175 | abssdv 4002 |
. . . . . . . 8
⊢ (𝐴 ⊆
No → {𝑧
∣ ∃𝑔 ∈
{𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))} ⊆ {1o,
2o}) |
177 | 125, 176 | eqsstrid 3969 |
. . . . . . 7
⊢ (𝐴 ⊆
No → ran (𝑔
∈ {𝑦 ∣
∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ⊆ {1o,
2o}) |
178 | 177 | ad2antrl 725 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
ran (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ⊆ {1o,
2o}) |
179 | | elno2 33857 |
. . . . . 6
⊢ ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ∈ No
↔ (Fun (𝑔 ∈
{𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ∧ dom (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ∈ On ∧ ran (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ⊆ {1o,
2o})) |
180 | 23, 124, 178, 179 | syl3anbrc 1342 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
(𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) ∈ No
) |
181 | 21, 180 | eqeltrd 2839 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ∈ No
) |
182 | 19, 181 | pm2.61ian 809 |
. . 3
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → if(∃𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ∈ No
) |
183 | 2, 182 | eqeltrid 2843 |
. 2
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
184 | 1, 183 | sylan2 593 |
1
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
𝑉) → 𝑆 ∈ No
) |