![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncms | Structured version Visualization version GIF version |
Description: The field of complex numbers is a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
cncms | ⊢ ℂfld ∈ CMetSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldms 24818 | . 2 ⊢ ℂfld ∈ MetSp | |
2 | eqid 2736 | . . 3 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
3 | 2 | cncmet 25378 | . 2 ⊢ (abs ∘ − ) ∈ (CMet‘ℂ) |
4 | cnfldbas 21392 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
5 | cnmet 24814 | . . . . . 6 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
6 | metf 24362 | . . . . . 6 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
8 | ffn 6741 | . . . . 5 ⊢ ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ)) | |
9 | fnresdm 6692 | . . . . 5 ⊢ ((abs ∘ − ) Fn (ℂ × ℂ) → ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − )) | |
10 | 7, 8, 9 | mp2b 10 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − ) |
11 | cnfldds 21400 | . . . . 5 ⊢ (abs ∘ − ) = (dist‘ℂfld) | |
12 | 11 | reseq1i 5997 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
13 | 10, 12 | eqtr3i 2766 | . . 3 ⊢ (abs ∘ − ) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
14 | 4, 13 | iscms 25401 | . 2 ⊢ (ℂfld ∈ CMetSp ↔ (ℂfld ∈ MetSp ∧ (abs ∘ − ) ∈ (CMet‘ℂ))) |
15 | 1, 3, 14 | mpbir2an 711 | 1 ⊢ ℂfld ∈ CMetSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2107 × cxp 5688 ↾ cres 5692 ∘ ccom 5694 Fn wfn 6561 ⟶wf 6562 ‘cfv 6566 ℂcc 11157 ℝcr 11158 − cmin 11496 abscabs 15276 distcds 17313 Metcmet 21374 ℂfldccnfld 21388 MetSpcms 24350 CMetccmet 25310 CMetSpccms 25388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 ax-addf 11238 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-of 7701 df-om 7892 df-1st 8019 df-2nd 8020 df-supp 8191 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-er 8750 df-map 8873 df-ixp 8943 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-fsupp 9406 df-fi 9455 df-sup 9486 df-inf 9487 df-oi 9554 df-card 9983 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-z 12618 df-dec 12738 df-uz 12883 df-q 12995 df-rp 13039 df-xneg 13158 df-xadd 13159 df-xmul 13160 df-ioo 13394 df-ico 13396 df-icc 13397 df-fz 13551 df-fzo 13698 df-seq 14046 df-exp 14106 df-hash 14373 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-struct 17187 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-mulr 17318 df-starv 17319 df-sca 17320 df-vsca 17321 df-ip 17322 df-tset 17323 df-ple 17324 df-ds 17326 df-unif 17327 df-hom 17328 df-cco 17329 df-rest 17475 df-topn 17476 df-0g 17494 df-gsum 17495 df-topgen 17496 df-pt 17497 df-prds 17500 df-xrs 17555 df-qtop 17560 df-imas 17561 df-xps 17563 df-mre 17637 df-mrc 17638 df-acs 17640 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-submnd 18816 df-mulg 19105 df-cntz 19354 df-cmn 19821 df-psmet 21380 df-xmet 21381 df-met 21382 df-bl 21383 df-mopn 21384 df-fbas 21385 df-fg 21386 df-cnfld 21389 df-top 22922 df-topon 22939 df-topsp 22961 df-bases 22975 df-cld 23049 df-ntr 23050 df-cls 23051 df-nei 23128 df-cn 23257 df-cnp 23258 df-haus 23345 df-cmp 23417 df-tx 23592 df-hmeo 23785 df-fil 23876 df-flim 23969 df-fcls 23971 df-xms 24352 df-ms 24353 df-tms 24354 df-cncf 24926 df-cfil 25311 df-cmet 25313 df-cms 25391 |
This theorem is referenced by: cnfldcusp 25413 resscdrg 25414 ishl2 25426 csschl 25432 recms 25436 |
Copyright terms: Public domain | W3C validator |