MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmssmscld Structured version   Visualization version   GIF version

Theorem cmssmscld 24525
Description: The restriction of a metric space is closed if it is complete. (Contributed by AV, 9-Oct-2022.)
Hypotheses
Ref Expression
cmsss.h 𝐾 = (𝑀s 𝐴)
cmsss.x 𝑋 = (Base‘𝑀)
cmsss.j 𝐽 = (TopOpen‘𝑀)
Assertion
Ref Expression
cmssmscld ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘𝐽))

Proof of Theorem cmssmscld
StepHypRef Expression
1 cmsss.x . . . . 5 𝑋 = (Base‘𝑀)
2 eqid 2740 . . . . 5 ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
31, 2msmet 23621 . . . 4 (𝑀 ∈ MetSp → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
433ad2ant1 1132 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
5 xpss12 5605 . . . . . . . 8 ((𝐴𝑋𝐴𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
65anidms 567 . . . . . . 7 (𝐴𝑋 → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
763ad2ant2 1133 . . . . . 6 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
87resabs1d 5921 . . . . 5 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴)))
91sseq2i 3955 . . . . . . . . 9 (𝐴𝑋𝐴 ⊆ (Base‘𝑀))
10 fvex 6784 . . . . . . . . . 10 (Base‘𝑀) ∈ V
1110ssex 5249 . . . . . . . . 9 (𝐴 ⊆ (Base‘𝑀) → 𝐴 ∈ V)
129, 11sylbi 216 . . . . . . . 8 (𝐴𝑋𝐴 ∈ V)
13123ad2ant2 1133 . . . . . . 7 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ V)
14 cmsss.h . . . . . . . 8 𝐾 = (𝑀s 𝐴)
15 eqid 2740 . . . . . . . 8 (dist‘𝑀) = (dist‘𝑀)
1614, 15ressds 17131 . . . . . . 7 (𝐴 ∈ V → (dist‘𝑀) = (dist‘𝐾))
1713, 16syl 17 . . . . . 6 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (dist‘𝑀) = (dist‘𝐾))
1817reseq1d 5889 . . . . 5 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
198, 18eqtrd 2780 . . . 4 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
20 eqid 2740 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
21 eqid 2740 . . . . . . . 8 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
2220, 21iscms 24520 . . . . . . 7 (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
2314, 1ressbas2 16960 . . . . . . . . . . . . . 14 (𝐴𝑋𝐴 = (Base‘𝐾))
2423adantr 481 . . . . . . . . . . . . 13 ((𝐴𝑋𝐾 ∈ MetSp) → 𝐴 = (Base‘𝐾))
2524eqcomd 2746 . . . . . . . . . . . 12 ((𝐴𝑋𝐾 ∈ MetSp) → (Base‘𝐾) = 𝐴)
2625sqxpeqd 5622 . . . . . . . . . . 11 ((𝐴𝑋𝐾 ∈ MetSp) → ((Base‘𝐾) × (Base‘𝐾)) = (𝐴 × 𝐴))
2726reseq2d 5890 . . . . . . . . . 10 ((𝐴𝑋𝐾 ∈ MetSp) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
2825fveq2d 6775 . . . . . . . . . 10 ((𝐴𝑋𝐾 ∈ MetSp) → (CMet‘(Base‘𝐾)) = (CMet‘𝐴))
2927, 28eleq12d 2835 . . . . . . . . 9 ((𝐴𝑋𝐾 ∈ MetSp) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3029biimpd 228 . . . . . . . 8 ((𝐴𝑋𝐾 ∈ MetSp) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3130expimpd 454 . . . . . . 7 (𝐴𝑋 → ((𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3222, 31syl5bi 241 . . . . . 6 (𝐴𝑋 → (𝐾 ∈ CMetSp → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3332imp 407 . . . . 5 ((𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
34333adant1 1129 . . . 4 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
3519, 34eqeltrd 2841 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
36 eqid 2740 . . . 4 (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))
3736metsscmetcld 24490 . . 3 ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋) ∧ (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)) → 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
384, 35, 37syl2anc 584 . 2 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
39 cmsss.j . . . . 5 𝐽 = (TopOpen‘𝑀)
4039, 1, 2mstopn 23616 . . . 4 (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
41403ad2ant1 1132 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
4241fveq2d 6775 . 2 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
4338, 42eleqtrrd 2844 1 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  Vcvv 3431  wss 3892   × cxp 5588  cres 5592  cfv 6432  (class class class)co 7272  Basecbs 16923  s cress 16952  distcds 16982  TopOpenctopn 17143  Metcmet 20594  MetOpencmopn 20598  Clsdccld 22178  MetSpcms 23482  CMetccmet 24429  CMetSpccms 24507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-map 8609  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fi 9158  df-sup 9189  df-inf 9190  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-z 12331  df-dec 12449  df-uz 12594  df-q 12700  df-rp 12742  df-xneg 12859  df-xadd 12860  df-xmul 12861  df-ico 13096  df-icc 13097  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-ds 16995  df-rest 17144  df-topgen 17165  df-psmet 20600  df-xmet 20601  df-met 20602  df-bl 20603  df-mopn 20604  df-fbas 20605  df-fg 20606  df-top 22054  df-topon 22071  df-topsp 22093  df-bases 22107  df-cld 22181  df-ntr 22182  df-cls 22183  df-nei 22260  df-haus 22477  df-fil 23008  df-flim 23101  df-xms 23484  df-ms 23485  df-cfil 24430  df-cmet 24432  df-cms 24510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator