MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmssmscld Structured version   Visualization version   GIF version

Theorem cmssmscld 23954
Description: The restriction of a metric space is closed if it is complete. (Contributed by AV, 9-Oct-2022.)
Hypotheses
Ref Expression
cmsss.h 𝐾 = (𝑀s 𝐴)
cmsss.x 𝑋 = (Base‘𝑀)
cmsss.j 𝐽 = (TopOpen‘𝑀)
Assertion
Ref Expression
cmssmscld ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘𝐽))

Proof of Theorem cmssmscld
StepHypRef Expression
1 cmsss.x . . . . 5 𝑋 = (Base‘𝑀)
2 eqid 2798 . . . . 5 ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
31, 2msmet 23064 . . . 4 (𝑀 ∈ MetSp → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
433ad2ant1 1130 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
5 xpss12 5534 . . . . . . . 8 ((𝐴𝑋𝐴𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
65anidms 570 . . . . . . 7 (𝐴𝑋 → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
763ad2ant2 1131 . . . . . 6 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
87resabs1d 5849 . . . . 5 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴)))
91sseq2i 3944 . . . . . . . . 9 (𝐴𝑋𝐴 ⊆ (Base‘𝑀))
10 fvex 6658 . . . . . . . . . 10 (Base‘𝑀) ∈ V
1110ssex 5189 . . . . . . . . 9 (𝐴 ⊆ (Base‘𝑀) → 𝐴 ∈ V)
129, 11sylbi 220 . . . . . . . 8 (𝐴𝑋𝐴 ∈ V)
13123ad2ant2 1131 . . . . . . 7 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ V)
14 cmsss.h . . . . . . . 8 𝐾 = (𝑀s 𝐴)
15 eqid 2798 . . . . . . . 8 (dist‘𝑀) = (dist‘𝑀)
1614, 15ressds 16678 . . . . . . 7 (𝐴 ∈ V → (dist‘𝑀) = (dist‘𝐾))
1713, 16syl 17 . . . . . 6 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (dist‘𝑀) = (dist‘𝐾))
1817reseq1d 5817 . . . . 5 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
198, 18eqtrd 2833 . . . 4 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
20 eqid 2798 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
21 eqid 2798 . . . . . . . 8 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
2220, 21iscms 23949 . . . . . . 7 (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
2314, 1ressbas2 16547 . . . . . . . . . . . . . 14 (𝐴𝑋𝐴 = (Base‘𝐾))
2423adantr 484 . . . . . . . . . . . . 13 ((𝐴𝑋𝐾 ∈ MetSp) → 𝐴 = (Base‘𝐾))
2524eqcomd 2804 . . . . . . . . . . . 12 ((𝐴𝑋𝐾 ∈ MetSp) → (Base‘𝐾) = 𝐴)
2625sqxpeqd 5551 . . . . . . . . . . 11 ((𝐴𝑋𝐾 ∈ MetSp) → ((Base‘𝐾) × (Base‘𝐾)) = (𝐴 × 𝐴))
2726reseq2d 5818 . . . . . . . . . 10 ((𝐴𝑋𝐾 ∈ MetSp) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
2825fveq2d 6649 . . . . . . . . . 10 ((𝐴𝑋𝐾 ∈ MetSp) → (CMet‘(Base‘𝐾)) = (CMet‘𝐴))
2927, 28eleq12d 2884 . . . . . . . . 9 ((𝐴𝑋𝐾 ∈ MetSp) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3029biimpd 232 . . . . . . . 8 ((𝐴𝑋𝐾 ∈ MetSp) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3130expimpd 457 . . . . . . 7 (𝐴𝑋 → ((𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3222, 31syl5bi 245 . . . . . 6 (𝐴𝑋 → (𝐾 ∈ CMetSp → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3332imp 410 . . . . 5 ((𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
34333adant1 1127 . . . 4 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
3519, 34eqeltrd 2890 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
36 eqid 2798 . . . 4 (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))
3736metsscmetcld 23919 . . 3 ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋) ∧ (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)) → 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
384, 35, 37syl2anc 587 . 2 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
39 cmsss.j . . . . 5 𝐽 = (TopOpen‘𝑀)
4039, 1, 2mstopn 23059 . . . 4 (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
41403ad2ant1 1130 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
4241fveq2d 6649 . 2 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
4338, 42eleqtrrd 2893 1 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881   × cxp 5517  cres 5521  cfv 6324  (class class class)co 7135  Basecbs 16475  s cress 16476  distcds 16566  TopOpenctopn 16687  Metcmet 20077  MetOpencmopn 20081  Clsdccld 21621  MetSpcms 22925  CMetccmet 23858  CMetSpccms 23936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-icc 12733  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-ds 16579  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-haus 21920  df-fil 22451  df-flim 22544  df-xms 22927  df-ms 22928  df-cfil 23859  df-cmet 23861  df-cms 23939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator