MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmssmscld Structured version   Visualization version   GIF version

Theorem cmssmscld 25248
Description: The restriction of a metric space is closed if it is complete. (Contributed by AV, 9-Oct-2022.)
Hypotheses
Ref Expression
cmsss.h 𝐾 = (𝑀s 𝐴)
cmsss.x 𝑋 = (Base‘𝑀)
cmsss.j 𝐽 = (TopOpen‘𝑀)
Assertion
Ref Expression
cmssmscld ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘𝐽))

Proof of Theorem cmssmscld
StepHypRef Expression
1 cmsss.x . . . . 5 𝑋 = (Base‘𝑀)
2 eqid 2729 . . . . 5 ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
31, 2msmet 24343 . . . 4 (𝑀 ∈ MetSp → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
433ad2ant1 1133 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
5 xpss12 5634 . . . . . . . 8 ((𝐴𝑋𝐴𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
65anidms 566 . . . . . . 7 (𝐴𝑋 → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
763ad2ant2 1134 . . . . . 6 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
87resabs1d 5959 . . . . 5 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴)))
91sseq2i 3965 . . . . . . . . 9 (𝐴𝑋𝐴 ⊆ (Base‘𝑀))
10 fvex 6835 . . . . . . . . . 10 (Base‘𝑀) ∈ V
1110ssex 5260 . . . . . . . . 9 (𝐴 ⊆ (Base‘𝑀) → 𝐴 ∈ V)
129, 11sylbi 217 . . . . . . . 8 (𝐴𝑋𝐴 ∈ V)
13123ad2ant2 1134 . . . . . . 7 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ V)
14 cmsss.h . . . . . . . 8 𝐾 = (𝑀s 𝐴)
15 eqid 2729 . . . . . . . 8 (dist‘𝑀) = (dist‘𝑀)
1614, 15ressds 17314 . . . . . . 7 (𝐴 ∈ V → (dist‘𝑀) = (dist‘𝐾))
1713, 16syl 17 . . . . . 6 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (dist‘𝑀) = (dist‘𝐾))
1817reseq1d 5929 . . . . 5 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
198, 18eqtrd 2764 . . . 4 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
20 eqid 2729 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
21 eqid 2729 . . . . . . . 8 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
2220, 21iscms 25243 . . . . . . 7 (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
2314, 1ressbas2 17149 . . . . . . . . . . . . . 14 (𝐴𝑋𝐴 = (Base‘𝐾))
2423adantr 480 . . . . . . . . . . . . 13 ((𝐴𝑋𝐾 ∈ MetSp) → 𝐴 = (Base‘𝐾))
2524eqcomd 2735 . . . . . . . . . . . 12 ((𝐴𝑋𝐾 ∈ MetSp) → (Base‘𝐾) = 𝐴)
2625sqxpeqd 5651 . . . . . . . . . . 11 ((𝐴𝑋𝐾 ∈ MetSp) → ((Base‘𝐾) × (Base‘𝐾)) = (𝐴 × 𝐴))
2726reseq2d 5930 . . . . . . . . . 10 ((𝐴𝑋𝐾 ∈ MetSp) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
2825fveq2d 6826 . . . . . . . . . 10 ((𝐴𝑋𝐾 ∈ MetSp) → (CMet‘(Base‘𝐾)) = (CMet‘𝐴))
2927, 28eleq12d 2822 . . . . . . . . 9 ((𝐴𝑋𝐾 ∈ MetSp) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3029biimpd 229 . . . . . . . 8 ((𝐴𝑋𝐾 ∈ MetSp) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3130expimpd 453 . . . . . . 7 (𝐴𝑋 → ((𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3222, 31biimtrid 242 . . . . . 6 (𝐴𝑋 → (𝐾 ∈ CMetSp → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3332imp 406 . . . . 5 ((𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
34333adant1 1130 . . . 4 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
3519, 34eqeltrd 2828 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
36 eqid 2729 . . . 4 (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))
3736metsscmetcld 25213 . . 3 ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋) ∧ (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)) → 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
384, 35, 37syl2anc 584 . 2 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
39 cmsss.j . . . . 5 𝐽 = (TopOpen‘𝑀)
4039, 1, 2mstopn 24338 . . . 4 (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
41403ad2ant1 1133 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
4241fveq2d 6826 . 2 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
4338, 42eleqtrrd 2831 1 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903   × cxp 5617  cres 5621  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  distcds 17170  TopOpenctopn 17325  Metcmet 21247  MetOpencmopn 21251  Clsdccld 22901  MetSpcms 24204  CMetccmet 25152  CMetSpccms 25230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-icc 13255  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-ds 17183  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-haus 23200  df-fil 23731  df-flim 23824  df-xms 24206  df-ms 24207  df-cfil 25153  df-cmet 25155  df-cms 25233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator