MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmssmscld Structured version   Visualization version   GIF version

Theorem cmssmscld 24514
Description: The restriction of a metric space is closed if it is complete. (Contributed by AV, 9-Oct-2022.)
Hypotheses
Ref Expression
cmsss.h 𝐾 = (𝑀s 𝐴)
cmsss.x 𝑋 = (Base‘𝑀)
cmsss.j 𝐽 = (TopOpen‘𝑀)
Assertion
Ref Expression
cmssmscld ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘𝐽))

Proof of Theorem cmssmscld
StepHypRef Expression
1 cmsss.x . . . . 5 𝑋 = (Base‘𝑀)
2 eqid 2738 . . . . 5 ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
31, 2msmet 23610 . . . 4 (𝑀 ∈ MetSp → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
433ad2ant1 1132 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
5 xpss12 5604 . . . . . . . 8 ((𝐴𝑋𝐴𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
65anidms 567 . . . . . . 7 (𝐴𝑋 → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
763ad2ant2 1133 . . . . . 6 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
87resabs1d 5922 . . . . 5 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴)))
91sseq2i 3950 . . . . . . . . 9 (𝐴𝑋𝐴 ⊆ (Base‘𝑀))
10 fvex 6787 . . . . . . . . . 10 (Base‘𝑀) ∈ V
1110ssex 5245 . . . . . . . . 9 (𝐴 ⊆ (Base‘𝑀) → 𝐴 ∈ V)
129, 11sylbi 216 . . . . . . . 8 (𝐴𝑋𝐴 ∈ V)
13123ad2ant2 1133 . . . . . . 7 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ V)
14 cmsss.h . . . . . . . 8 𝐾 = (𝑀s 𝐴)
15 eqid 2738 . . . . . . . 8 (dist‘𝑀) = (dist‘𝑀)
1614, 15ressds 17120 . . . . . . 7 (𝐴 ∈ V → (dist‘𝑀) = (dist‘𝐾))
1713, 16syl 17 . . . . . 6 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (dist‘𝑀) = (dist‘𝐾))
1817reseq1d 5890 . . . . 5 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
198, 18eqtrd 2778 . . . 4 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
20 eqid 2738 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
21 eqid 2738 . . . . . . . 8 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
2220, 21iscms 24509 . . . . . . 7 (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
2314, 1ressbas2 16949 . . . . . . . . . . . . . 14 (𝐴𝑋𝐴 = (Base‘𝐾))
2423adantr 481 . . . . . . . . . . . . 13 ((𝐴𝑋𝐾 ∈ MetSp) → 𝐴 = (Base‘𝐾))
2524eqcomd 2744 . . . . . . . . . . . 12 ((𝐴𝑋𝐾 ∈ MetSp) → (Base‘𝐾) = 𝐴)
2625sqxpeqd 5621 . . . . . . . . . . 11 ((𝐴𝑋𝐾 ∈ MetSp) → ((Base‘𝐾) × (Base‘𝐾)) = (𝐴 × 𝐴))
2726reseq2d 5891 . . . . . . . . . 10 ((𝐴𝑋𝐾 ∈ MetSp) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
2825fveq2d 6778 . . . . . . . . . 10 ((𝐴𝑋𝐾 ∈ MetSp) → (CMet‘(Base‘𝐾)) = (CMet‘𝐴))
2927, 28eleq12d 2833 . . . . . . . . 9 ((𝐴𝑋𝐾 ∈ MetSp) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3029biimpd 228 . . . . . . . 8 ((𝐴𝑋𝐾 ∈ MetSp) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3130expimpd 454 . . . . . . 7 (𝐴𝑋 → ((𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3222, 31syl5bi 241 . . . . . 6 (𝐴𝑋 → (𝐾 ∈ CMetSp → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3332imp 407 . . . . 5 ((𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
34333adant1 1129 . . . 4 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
3519, 34eqeltrd 2839 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
36 eqid 2738 . . . 4 (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))
3736metsscmetcld 24479 . . 3 ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋) ∧ (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)) → 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
384, 35, 37syl2anc 584 . 2 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
39 cmsss.j . . . . 5 𝐽 = (TopOpen‘𝑀)
4039, 1, 2mstopn 23605 . . . 4 (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
41403ad2ant1 1132 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
4241fveq2d 6778 . 2 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
4338, 42eleqtrrd 2842 1 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887   × cxp 5587  cres 5591  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  distcds 16971  TopOpenctopn 17132  Metcmet 20583  MetOpencmopn 20587  Clsdccld 22167  MetSpcms 23471  CMetccmet 24418  CMetSpccms 24496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-icc 13086  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-ds 16984  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-haus 22466  df-fil 22997  df-flim 23090  df-xms 23473  df-ms 23474  df-cfil 24419  df-cmet 24421  df-cms 24499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator