Proof of Theorem cmssmscld
Step | Hyp | Ref
| Expression |
1 | | cmsss.x |
. . . . 5
⊢ 𝑋 = (Base‘𝑀) |
2 | | eqid 2738 |
. . . . 5
⊢
((dist‘𝑀)
↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) |
3 | 1, 2 | msmet 23518 |
. . . 4
⊢ (𝑀 ∈ MetSp →
((dist‘𝑀) ↾
(𝑋 × 𝑋)) ∈ (Met‘𝑋)) |
4 | 3 | 3ad2ant1 1131 |
. . 3
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋)) |
5 | | xpss12 5595 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
6 | 5 | anidms 566 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝑋 → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
7 | 6 | 3ad2ant2 1132 |
. . . . . 6
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
8 | 7 | resabs1d 5911 |
. . . . 5
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴))) |
9 | 1 | sseq2i 3946 |
. . . . . . . . 9
⊢ (𝐴 ⊆ 𝑋 ↔ 𝐴 ⊆ (Base‘𝑀)) |
10 | | fvex 6769 |
. . . . . . . . . 10
⊢
(Base‘𝑀)
∈ V |
11 | 10 | ssex 5240 |
. . . . . . . . 9
⊢ (𝐴 ⊆ (Base‘𝑀) → 𝐴 ∈ V) |
12 | 9, 11 | sylbi 216 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝑋 → 𝐴 ∈ V) |
13 | 12 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → 𝐴 ∈ V) |
14 | | cmsss.h |
. . . . . . . 8
⊢ 𝐾 = (𝑀 ↾s 𝐴) |
15 | | eqid 2738 |
. . . . . . . 8
⊢
(dist‘𝑀) =
(dist‘𝑀) |
16 | 14, 15 | ressds 17039 |
. . . . . . 7
⊢ (𝐴 ∈ V →
(dist‘𝑀) =
(dist‘𝐾)) |
17 | 13, 16 | syl 17 |
. . . . . 6
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → (dist‘𝑀) = (dist‘𝐾)) |
18 | 17 | reseq1d 5879 |
. . . . 5
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (𝐴 × 𝐴))) |
19 | 8, 18 | eqtrd 2778 |
. . . 4
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (𝐴 × 𝐴))) |
20 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
21 | | eqid 2738 |
. . . . . . . 8
⊢
((dist‘𝐾)
↾ ((Base‘𝐾)
× (Base‘𝐾))) =
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾))) |
22 | 20, 21 | iscms 24414 |
. . . . . . 7
⊢ (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾))) ∈
(CMet‘(Base‘𝐾)))) |
23 | 14, 1 | ressbas2 16875 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ 𝑋 → 𝐴 = (Base‘𝐾)) |
24 | 23 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp) → 𝐴 = (Base‘𝐾)) |
25 | 24 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp) → (Base‘𝐾) = 𝐴) |
26 | 25 | sqxpeqd 5612 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp) → ((Base‘𝐾) × (Base‘𝐾)) = (𝐴 × 𝐴)) |
27 | 26 | reseq2d 5880 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ (𝐴 × 𝐴))) |
28 | 25 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp) →
(CMet‘(Base‘𝐾))
= (CMet‘𝐴)) |
29 | 27, 28 | eleq12d 2833 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈
(CMet‘(Base‘𝐾))
↔ ((dist‘𝐾)
↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))) |
30 | 29 | biimpd 228 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈
(CMet‘(Base‘𝐾))
→ ((dist‘𝐾)
↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))) |
31 | 30 | expimpd 453 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝑋 → ((𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈
(CMet‘(Base‘𝐾))) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))) |
32 | 22, 31 | syl5bi 241 |
. . . . . 6
⊢ (𝐴 ⊆ 𝑋 → (𝐾 ∈ CMetSp → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))) |
33 | 32 | imp 406 |
. . . . 5
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)) |
34 | 33 | 3adant1 1128 |
. . . 4
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)) |
35 | 19, 34 | eqeltrd 2839 |
. . 3
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)) |
36 | | eqid 2738 |
. . . 4
⊢
(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
37 | 36 | metsscmetcld 24384 |
. . 3
⊢
((((dist‘𝑀)
↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋) ∧ (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)) → 𝐴 ∈
(Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))) |
38 | 4, 35, 37 | syl2anc 583 |
. 2
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → 𝐴 ∈
(Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))) |
39 | | cmsss.j |
. . . . 5
⊢ 𝐽 = (TopOpen‘𝑀) |
40 | 39, 1, 2 | mstopn 23513 |
. . . 4
⊢ (𝑀 ∈ MetSp → 𝐽 =
(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))) |
41 | 40 | 3ad2ant1 1131 |
. . 3
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))) |
42 | 41 | fveq2d 6760 |
. 2
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → (Clsd‘𝐽) =
(Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))) |
43 | 38, 42 | eleqtrrd 2842 |
1
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘𝐽)) |