Proof of Theorem cmssmscld
| Step | Hyp | Ref
| Expression |
| 1 | | cmsss.x |
. . . . 5
⊢ 𝑋 = (Base‘𝑀) |
| 2 | | eqid 2734 |
. . . . 5
⊢
((dist‘𝑀)
↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) |
| 3 | 1, 2 | msmet 24412 |
. . . 4
⊢ (𝑀 ∈ MetSp →
((dist‘𝑀) ↾
(𝑋 × 𝑋)) ∈ (Met‘𝑋)) |
| 4 | 3 | 3ad2ant1 1133 |
. . 3
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋)) |
| 5 | | xpss12 5680 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
| 6 | 5 | anidms 566 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝑋 → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
| 7 | 6 | 3ad2ant2 1134 |
. . . . . 6
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
| 8 | 7 | resabs1d 6006 |
. . . . 5
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴))) |
| 9 | 1 | sseq2i 3993 |
. . . . . . . . 9
⊢ (𝐴 ⊆ 𝑋 ↔ 𝐴 ⊆ (Base‘𝑀)) |
| 10 | | fvex 6899 |
. . . . . . . . . 10
⊢
(Base‘𝑀)
∈ V |
| 11 | 10 | ssex 5301 |
. . . . . . . . 9
⊢ (𝐴 ⊆ (Base‘𝑀) → 𝐴 ∈ V) |
| 12 | 9, 11 | sylbi 217 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝑋 → 𝐴 ∈ V) |
| 13 | 12 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → 𝐴 ∈ V) |
| 14 | | cmsss.h |
. . . . . . . 8
⊢ 𝐾 = (𝑀 ↾s 𝐴) |
| 15 | | eqid 2734 |
. . . . . . . 8
⊢
(dist‘𝑀) =
(dist‘𝑀) |
| 16 | 14, 15 | ressds 17426 |
. . . . . . 7
⊢ (𝐴 ∈ V →
(dist‘𝑀) =
(dist‘𝐾)) |
| 17 | 13, 16 | syl 17 |
. . . . . 6
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → (dist‘𝑀) = (dist‘𝐾)) |
| 18 | 17 | reseq1d 5976 |
. . . . 5
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (𝐴 × 𝐴))) |
| 19 | 8, 18 | eqtrd 2769 |
. . . 4
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (𝐴 × 𝐴))) |
| 20 | | eqid 2734 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 21 | | eqid 2734 |
. . . . . . . 8
⊢
((dist‘𝐾)
↾ ((Base‘𝐾)
× (Base‘𝐾))) =
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾))) |
| 22 | 20, 21 | iscms 25315 |
. . . . . . 7
⊢ (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾))) ∈
(CMet‘(Base‘𝐾)))) |
| 23 | 14, 1 | ressbas2 17261 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ 𝑋 → 𝐴 = (Base‘𝐾)) |
| 24 | 23 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp) → 𝐴 = (Base‘𝐾)) |
| 25 | 24 | eqcomd 2740 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp) → (Base‘𝐾) = 𝐴) |
| 26 | 25 | sqxpeqd 5697 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp) → ((Base‘𝐾) × (Base‘𝐾)) = (𝐴 × 𝐴)) |
| 27 | 26 | reseq2d 5977 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ (𝐴 × 𝐴))) |
| 28 | 25 | fveq2d 6890 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp) →
(CMet‘(Base‘𝐾))
= (CMet‘𝐴)) |
| 29 | 27, 28 | eleq12d 2827 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈
(CMet‘(Base‘𝐾))
↔ ((dist‘𝐾)
↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))) |
| 30 | 29 | biimpd 229 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈
(CMet‘(Base‘𝐾))
→ ((dist‘𝐾)
↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))) |
| 31 | 30 | expimpd 453 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝑋 → ((𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈
(CMet‘(Base‘𝐾))) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))) |
| 32 | 22, 31 | biimtrid 242 |
. . . . . 6
⊢ (𝐴 ⊆ 𝑋 → (𝐾 ∈ CMetSp → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))) |
| 33 | 32 | imp 406 |
. . . . 5
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)) |
| 34 | 33 | 3adant1 1130 |
. . . 4
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)) |
| 35 | 19, 34 | eqeltrd 2833 |
. . 3
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)) |
| 36 | | eqid 2734 |
. . . 4
⊢
(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| 37 | 36 | metsscmetcld 25285 |
. . 3
⊢
((((dist‘𝑀)
↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋) ∧ (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)) → 𝐴 ∈
(Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))) |
| 38 | 4, 35, 37 | syl2anc 584 |
. 2
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → 𝐴 ∈
(Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))) |
| 39 | | cmsss.j |
. . . . 5
⊢ 𝐽 = (TopOpen‘𝑀) |
| 40 | 39, 1, 2 | mstopn 24407 |
. . . 4
⊢ (𝑀 ∈ MetSp → 𝐽 =
(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))) |
| 41 | 40 | 3ad2ant1 1133 |
. . 3
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))) |
| 42 | 41 | fveq2d 6890 |
. 2
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → (Clsd‘𝐽) =
(Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))) |
| 43 | 38, 42 | eleqtrrd 2836 |
1
⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘𝐽)) |