Step | Hyp | Ref
| Expression |
1 | | conngrv2edg.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
2 | 1 | fvexi 6770 |
. . 3
⊢ 𝑉 ∈ V |
3 | | simp3 1136 |
. . 3
⊢ ((𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) → 1 <
(♯‘𝑉)) |
4 | | simp2 1135 |
. . 3
⊢ ((𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) → 𝑁 ∈ 𝑉) |
5 | | hashgt12el2 14066 |
. . 3
⊢ ((𝑉 ∈ V ∧ 1 <
(♯‘𝑉) ∧
𝑁 ∈ 𝑉) → ∃𝑣 ∈ 𝑉 𝑁 ≠ 𝑣) |
6 | 2, 3, 4, 5 | mp3an2i 1464 |
. 2
⊢ ((𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) → ∃𝑣 ∈ 𝑉 𝑁 ≠ 𝑣) |
7 | 1 | isconngr 28454 |
. . . . . . . 8
⊢ (𝐺 ∈ ConnGraph → (𝐺 ∈ ConnGraph ↔
∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝)) |
8 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑁 → (𝑎(PathsOn‘𝐺)𝑏) = (𝑁(PathsOn‘𝐺)𝑏)) |
9 | 8 | breqd 5081 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑁 → (𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 ↔ 𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝)) |
10 | 9 | 2exbidv 1928 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑁 → (∃𝑓∃𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝)) |
11 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑣 → (𝑁(PathsOn‘𝐺)𝑏) = (𝑁(PathsOn‘𝐺)𝑣)) |
12 | 11 | breqd 5081 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑣 → (𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝 ↔ 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝)) |
13 | 12 | 2exbidv 1928 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑣 → (∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝)) |
14 | 10, 13 | rspc2v 3562 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝)) |
15 | 14 | ad2ant2r 743 |
. . . . . . . . 9
⊢ (((𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣)) → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝)) |
16 | | pthontrlon 28016 |
. . . . . . . . . . . 12
⊢ (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → 𝑓(𝑁(TrailsOn‘𝐺)𝑣)𝑝) |
17 | | trlsonwlkon 27979 |
. . . . . . . . . . . 12
⊢ (𝑓(𝑁(TrailsOn‘𝐺)𝑣)𝑝 → 𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝) |
18 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣))) → 𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝) |
19 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣)) → 𝑁 ≠ 𝑣) |
20 | | wlkon2n0 27936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ 𝑁 ≠ 𝑣) → (♯‘𝑓) ≠ 0) |
21 | 19, 20 | sylan2 592 |
. . . . . . . . . . . . . 14
⊢ ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣))) → (♯‘𝑓) ≠ 0) |
22 | 18, 21 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣))) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (♯‘𝑓) ≠ 0)) |
23 | 22 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 → (((𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣)) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (♯‘𝑓) ≠ 0))) |
24 | 16, 17, 23 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → (((𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣)) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (♯‘𝑓) ≠ 0))) |
25 | | conngrv2edg.i |
. . . . . . . . . . . 12
⊢ 𝐼 = (iEdg‘𝐺) |
26 | 25 | wlkonl1iedg 27935 |
. . . . . . . . . . 11
⊢ ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (♯‘𝑓) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒) |
27 | 24, 26 | syl6com 37 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣)) → (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → ∃𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒)) |
28 | 27 | exlimdvv 1938 |
. . . . . . . . 9
⊢ (((𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣)) → (∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → ∃𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒)) |
29 | 15, 28 | syldc 48 |
. . . . . . . 8
⊢
(∀𝑎 ∈
𝑉 ∀𝑏 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → (((𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒)) |
30 | 7, 29 | syl6bi 252 |
. . . . . . 7
⊢ (𝐺 ∈ ConnGraph → (𝐺 ∈ ConnGraph →
(((𝑁 ∈ 𝑉 ∧ 1 <
(♯‘𝑉)) ∧
(𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒))) |
31 | 30 | pm2.43i 52 |
. . . . . 6
⊢ (𝐺 ∈ ConnGraph →
(((𝑁 ∈ 𝑉 ∧ 1 <
(♯‘𝑉)) ∧
(𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒)) |
32 | 31 | expd 415 |
. . . . 5
⊢ (𝐺 ∈ ConnGraph → ((𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) → ((𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣) → ∃𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒))) |
33 | 32 | 3impib 1114 |
. . . 4
⊢ ((𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) → ((𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣) → ∃𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒)) |
34 | 33 | expd 415 |
. . 3
⊢ ((𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) → (𝑣 ∈ 𝑉 → (𝑁 ≠ 𝑣 → ∃𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒))) |
35 | 34 | rexlimdv 3211 |
. 2
⊢ ((𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) → (∃𝑣 ∈ 𝑉 𝑁 ≠ 𝑣 → ∃𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒)) |
36 | 6, 35 | mpd 15 |
1
⊢ ((𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) → ∃𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒) |