MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conngrv2edg Structured version   Visualization version   GIF version

Theorem conngrv2edg 30130
Description: A vertex in a connected graph with more than one vertex is incident with at least one edge. Formerly part of proof for vdgn0frgrv2 30230. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 4-Apr-2021.)
Hypotheses
Ref Expression
conngrv2edg.v 𝑉 = (Vtx‘𝐺)
conngrv2edg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
conngrv2edg ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
Distinct variable groups:   𝑒,𝐺   𝑒,𝐼   𝑒,𝑁
Allowed substitution hint:   𝑉(𝑒)

Proof of Theorem conngrv2edg
Dummy variables 𝑎 𝑏 𝑓 𝑝 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 conngrv2edg.v . . . 4 𝑉 = (Vtx‘𝐺)
21fvexi 6874 . . 3 𝑉 ∈ V
3 simp3 1138 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → 1 < (♯‘𝑉))
4 simp2 1137 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → 𝑁𝑉)
5 hashgt12el2 14394 . . 3 ((𝑉 ∈ V ∧ 1 < (♯‘𝑉) ∧ 𝑁𝑉) → ∃𝑣𝑉 𝑁𝑣)
62, 3, 4, 5mp3an2i 1468 . 2 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → ∃𝑣𝑉 𝑁𝑣)
71isconngr 30124 . . . . . . . 8 (𝐺 ∈ ConnGraph → (𝐺 ∈ ConnGraph ↔ ∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝))
8 oveq1 7396 . . . . . . . . . . . . 13 (𝑎 = 𝑁 → (𝑎(PathsOn‘𝐺)𝑏) = (𝑁(PathsOn‘𝐺)𝑏))
98breqd 5120 . . . . . . . . . . . 12 (𝑎 = 𝑁 → (𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝))
1092exbidv 1924 . . . . . . . . . . 11 (𝑎 = 𝑁 → (∃𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝))
11 oveq2 7397 . . . . . . . . . . . . 13 (𝑏 = 𝑣 → (𝑁(PathsOn‘𝐺)𝑏) = (𝑁(PathsOn‘𝐺)𝑣))
1211breqd 5120 . . . . . . . . . . . 12 (𝑏 = 𝑣 → (𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
13122exbidv 1924 . . . . . . . . . . 11 (𝑏 = 𝑣 → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
1410, 13rspc2v 3602 . . . . . . . . . 10 ((𝑁𝑉𝑣𝑉) → (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
1514ad2ant2r 747 . . . . . . . . 9 (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
16 pthontrlon 29683 . . . . . . . . . . . 12 (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝𝑓(𝑁(TrailsOn‘𝐺)𝑣)𝑝)
17 trlsonwlkon 29644 . . . . . . . . . . . 12 (𝑓(𝑁(TrailsOn‘𝐺)𝑣)𝑝𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝)
18 simpl 482 . . . . . . . . . . . . . 14 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → 𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝)
19 simprr 772 . . . . . . . . . . . . . . 15 (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → 𝑁𝑣)
20 wlkon2n0 29600 . . . . . . . . . . . . . . 15 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝𝑁𝑣) → (♯‘𝑓) ≠ 0)
2119, 20sylan2 593 . . . . . . . . . . . . . 14 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → (♯‘𝑓) ≠ 0)
2218, 21jca 511 . . . . . . . . . . . . 13 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (♯‘𝑓) ≠ 0))
2322ex 412 . . . . . . . . . . . 12 (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 → (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (♯‘𝑓) ≠ 0)))
2416, 17, 233syl 18 . . . . . . . . . . 11 (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (♯‘𝑓) ≠ 0)))
25 conngrv2edg.i . . . . . . . . . . . 12 𝐼 = (iEdg‘𝐺)
2625wlkonl1iedg 29599 . . . . . . . . . . 11 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (♯‘𝑓) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
2724, 26syl6com 37 . . . . . . . . . 10 (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
2827exlimdvv 1934 . . . . . . . . 9 (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
2915, 28syldc 48 . . . . . . . 8 (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
307, 29biimtrdi 253 . . . . . . 7 (𝐺 ∈ ConnGraph → (𝐺 ∈ ConnGraph → (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
3130pm2.43i 52 . . . . . 6 (𝐺 ∈ ConnGraph → (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
3231expd 415 . . . . 5 (𝐺 ∈ ConnGraph → ((𝑁𝑉 ∧ 1 < (♯‘𝑉)) → ((𝑣𝑉𝑁𝑣) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
33323impib 1116 . . . 4 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → ((𝑣𝑉𝑁𝑣) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
3433expd 415 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → (𝑣𝑉 → (𝑁𝑣 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
3534rexlimdv 3133 . 2 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → (∃𝑣𝑉 𝑁𝑣 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
366, 35mpd 15 1 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450   class class class wbr 5109  ran crn 5641  cfv 6513  (class class class)co 7389  0cc0 11074  1c1 11075   < clt 11214  chash 14301  Vtxcvtx 28929  iEdgciedg 28930  WalksOncwlkson 29531  TrailsOnctrlson 29625  PathsOncpthson 29648  ConnGraphcconngr 30121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-n0 12449  df-xnn0 12522  df-z 12536  df-uz 12800  df-fz 13475  df-fzo 13622  df-hash 14302  df-word 14485  df-wlks 29533  df-wlkson 29534  df-trlson 29627  df-pthson 29652  df-conngr 30122
This theorem is referenced by:  vdn0conngrumgrv2  30131
  Copyright terms: Public domain W3C validator