MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conngrv2edg Structured version   Visualization version   GIF version

Theorem conngrv2edg 27889
Description: A vertex in a connected graph with more than one vertex is incident with at least one edge. Formerly part of proof for vdgn0frgrv2 27989. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 4-Apr-2021.)
Hypotheses
Ref Expression
conngrv2edg.v 𝑉 = (Vtx‘𝐺)
conngrv2edg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
conngrv2edg ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
Distinct variable groups:   𝑒,𝐺   𝑒,𝐼   𝑒,𝑁
Allowed substitution hint:   𝑉(𝑒)

Proof of Theorem conngrv2edg
Dummy variables 𝑎 𝑏 𝑓 𝑝 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 conngrv2edg.v . . . 4 𝑉 = (Vtx‘𝐺)
21fvexi 6680 . . 3 𝑉 ∈ V
3 simp3 1132 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → 1 < (♯‘𝑉))
4 simp2 1131 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → 𝑁𝑉)
5 hashgt12el2 13777 . . 3 ((𝑉 ∈ V ∧ 1 < (♯‘𝑉) ∧ 𝑁𝑉) → ∃𝑣𝑉 𝑁𝑣)
62, 3, 4, 5mp3an2i 1459 . 2 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → ∃𝑣𝑉 𝑁𝑣)
71isconngr 27883 . . . . . . . 8 (𝐺 ∈ ConnGraph → (𝐺 ∈ ConnGraph ↔ ∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝))
8 oveq1 7158 . . . . . . . . . . . . 13 (𝑎 = 𝑁 → (𝑎(PathsOn‘𝐺)𝑏) = (𝑁(PathsOn‘𝐺)𝑏))
98breqd 5073 . . . . . . . . . . . 12 (𝑎 = 𝑁 → (𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝))
1092exbidv 1918 . . . . . . . . . . 11 (𝑎 = 𝑁 → (∃𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝))
11 oveq2 7159 . . . . . . . . . . . . 13 (𝑏 = 𝑣 → (𝑁(PathsOn‘𝐺)𝑏) = (𝑁(PathsOn‘𝐺)𝑣))
1211breqd 5073 . . . . . . . . . . . 12 (𝑏 = 𝑣 → (𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
13122exbidv 1918 . . . . . . . . . . 11 (𝑏 = 𝑣 → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
1410, 13rspc2v 3636 . . . . . . . . . 10 ((𝑁𝑉𝑣𝑉) → (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
1514ad2ant2r 743 . . . . . . . . 9 (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
16 pthontrlon 27443 . . . . . . . . . . . 12 (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝𝑓(𝑁(TrailsOn‘𝐺)𝑣)𝑝)
17 trlsonwlkon 27406 . . . . . . . . . . . 12 (𝑓(𝑁(TrailsOn‘𝐺)𝑣)𝑝𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝)
18 simpl 483 . . . . . . . . . . . . . 14 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → 𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝)
19 simprr 769 . . . . . . . . . . . . . . 15 (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → 𝑁𝑣)
20 wlkon2n0 27363 . . . . . . . . . . . . . . 15 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝𝑁𝑣) → (♯‘𝑓) ≠ 0)
2119, 20sylan2 592 . . . . . . . . . . . . . 14 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → (♯‘𝑓) ≠ 0)
2218, 21jca 512 . . . . . . . . . . . . 13 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (♯‘𝑓) ≠ 0))
2322ex 413 . . . . . . . . . . . 12 (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 → (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (♯‘𝑓) ≠ 0)))
2416, 17, 233syl 18 . . . . . . . . . . 11 (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (♯‘𝑓) ≠ 0)))
25 conngrv2edg.i . . . . . . . . . . . 12 𝐼 = (iEdg‘𝐺)
2625wlkonl1iedg 27362 . . . . . . . . . . 11 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (♯‘𝑓) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
2724, 26syl6com 37 . . . . . . . . . 10 (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
2827exlimdvv 1928 . . . . . . . . 9 (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
2915, 28syldc 48 . . . . . . . 8 (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
307, 29syl6bi 254 . . . . . . 7 (𝐺 ∈ ConnGraph → (𝐺 ∈ ConnGraph → (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
3130pm2.43i 52 . . . . . 6 (𝐺 ∈ ConnGraph → (((𝑁𝑉 ∧ 1 < (♯‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
3231expd 416 . . . . 5 (𝐺 ∈ ConnGraph → ((𝑁𝑉 ∧ 1 < (♯‘𝑉)) → ((𝑣𝑉𝑁𝑣) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
33323impib 1110 . . . 4 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → ((𝑣𝑉𝑁𝑣) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
3433expd 416 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → (𝑣𝑉 → (𝑁𝑣 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
3534rexlimdv 3287 . 2 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → (∃𝑣𝑉 𝑁𝑣 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
366, 35mpd 15 1 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wex 1773  wcel 2106  wne 3020  wral 3142  wrex 3143  Vcvv 3499   class class class wbr 5062  ran crn 5554  cfv 6351  (class class class)co 7151  0cc0 10529  1c1 10530   < clt 10667  chash 13683  Vtxcvtx 26696  iEdgciedg 26697  WalksOncwlkson 27294  TrailsOnctrlson 27388  PathsOncpthson 27410  ConnGraphcconngr 27880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ifp 1057  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-hash 13684  df-word 13855  df-wlks 27296  df-wlkson 27297  df-trls 27389  df-trlson 27390  df-pths 27412  df-pthson 27414  df-conngr 27881
This theorem is referenced by:  vdn0conngrumgrv2  27890
  Copyright terms: Public domain W3C validator