MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isconngr1 Structured version   Visualization version   GIF version

Theorem isconngr1 30222
Description: The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Hypothesis
Ref Expression
isconngr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isconngr1 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
Distinct variable groups:   𝑓,𝑘,𝑛,𝑝,𝐺   𝑘,𝑉,𝑛
Allowed substitution hints:   𝑉(𝑓,𝑝)   𝑊(𝑓,𝑘,𝑛,𝑝)

Proof of Theorem isconngr1
Dummy variables 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfconngr1 30220 . . 3 ConnGraph = {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
21eleq2i 2836 . 2 (𝐺 ∈ ConnGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝})
3 fvex 6933 . . . . . 6 (Vtx‘𝑔) ∈ V
4 id 22 . . . . . . 7 (𝑣 = (Vtx‘𝑔) → 𝑣 = (Vtx‘𝑔))
5 difeq1 4142 . . . . . . . 8 (𝑣 = (Vtx‘𝑔) → (𝑣 ∖ {𝑘}) = ((Vtx‘𝑔) ∖ {𝑘}))
65raleqdv 3334 . . . . . . 7 (𝑣 = (Vtx‘𝑔) → (∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
74, 6raleqbidv 3354 . . . . . 6 (𝑣 = (Vtx‘𝑔) → (∀𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
83, 7sbcie 3848 . . . . 5 ([(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)
98abbii 2812 . . . 4 {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
109eleq2i 2836 . . 3 (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ 𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝})
11 fveq2 6920 . . . . . 6 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
12 isconngr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
1311, 12eqtr4di 2798 . . . . 5 ( = 𝐺 → (Vtx‘) = 𝑉)
1413difeq1d 4148 . . . . . 6 ( = 𝐺 → ((Vtx‘) ∖ {𝑘}) = (𝑉 ∖ {𝑘}))
15 fveq2 6920 . . . . . . . . 9 ( = 𝐺 → (PathsOn‘) = (PathsOn‘𝐺))
1615oveqd 7465 . . . . . . . 8 ( = 𝐺 → (𝑘(PathsOn‘)𝑛) = (𝑘(PathsOn‘𝐺)𝑛))
1716breqd 5177 . . . . . . 7 ( = 𝐺 → (𝑓(𝑘(PathsOn‘)𝑛)𝑝𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
18172exbidv 1923 . . . . . 6 ( = 𝐺 → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
1914, 18raleqbidv 3354 . . . . 5 ( = 𝐺 → (∀𝑛 ∈ ((Vtx‘) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2013, 19raleqbidv 3354 . . . 4 ( = 𝐺 → (∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ ((Vtx‘) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
21 fveq2 6920 . . . . . 6 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
2221difeq1d 4148 . . . . . . 7 (𝑔 = → ((Vtx‘𝑔) ∖ {𝑘}) = ((Vtx‘) ∖ {𝑘}))
23 fveq2 6920 . . . . . . . . . 10 (𝑔 = → (PathsOn‘𝑔) = (PathsOn‘))
2423oveqd 7465 . . . . . . . . 9 (𝑔 = → (𝑘(PathsOn‘𝑔)𝑛) = (𝑘(PathsOn‘)𝑛))
2524breqd 5177 . . . . . . . 8 (𝑔 = → (𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝𝑓(𝑘(PathsOn‘)𝑛)𝑝))
26252exbidv 1923 . . . . . . 7 (𝑔 = → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2722, 26raleqbidv 3354 . . . . . 6 (𝑔 = → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ ((Vtx‘) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2821, 27raleqbidv 3354 . . . . 5 (𝑔 = → (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ ((Vtx‘) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2928cbvabv 2815 . . . 4 {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = { ∣ ∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ ((Vtx‘) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝}
3020, 29elab2g 3696 . . 3 (𝐺𝑊 → (𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
3110, 30bitrid 283 . 2 (𝐺𝑊 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
322, 31bitrid 283 1 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  [wsbc 3804  cdif 3973  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  PathsOncpthson 29750  ConnGraphcconngr 30218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-wlks 29635  df-wlkson 29636  df-trls 29728  df-trlson 29729  df-pths 29752  df-pthson 29754  df-conngr 30219
This theorem is referenced by:  cusconngr  30223  frgrconngr  30326
  Copyright terms: Public domain W3C validator