MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isconngr1 Structured version   Visualization version   GIF version

Theorem isconngr1 30119
Description: The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Hypothesis
Ref Expression
isconngr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isconngr1 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
Distinct variable groups:   𝑓,𝑘,𝑛,𝑝,𝐺   𝑘,𝑉,𝑛
Allowed substitution hints:   𝑉(𝑓,𝑝)   𝑊(𝑓,𝑘,𝑛,𝑝)

Proof of Theorem isconngr1
Dummy variables 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfconngr1 30117 . . 3 ConnGraph = {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
21eleq2i 2820 . 2 (𝐺 ∈ ConnGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝})
3 fvex 6871 . . . . . 6 (Vtx‘𝑔) ∈ V
4 id 22 . . . . . . 7 (𝑣 = (Vtx‘𝑔) → 𝑣 = (Vtx‘𝑔))
5 difeq1 4082 . . . . . . . 8 (𝑣 = (Vtx‘𝑔) → (𝑣 ∖ {𝑘}) = ((Vtx‘𝑔) ∖ {𝑘}))
65raleqdv 3299 . . . . . . 7 (𝑣 = (Vtx‘𝑔) → (∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
74, 6raleqbidv 3319 . . . . . 6 (𝑣 = (Vtx‘𝑔) → (∀𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
83, 7sbcie 3795 . . . . 5 ([(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)
98abbii 2796 . . . 4 {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
109eleq2i 2820 . . 3 (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ 𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝})
11 fveq2 6858 . . . . . 6 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
12 isconngr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
1311, 12eqtr4di 2782 . . . . 5 ( = 𝐺 → (Vtx‘) = 𝑉)
1413difeq1d 4088 . . . . . 6 ( = 𝐺 → ((Vtx‘) ∖ {𝑘}) = (𝑉 ∖ {𝑘}))
15 fveq2 6858 . . . . . . . . 9 ( = 𝐺 → (PathsOn‘) = (PathsOn‘𝐺))
1615oveqd 7404 . . . . . . . 8 ( = 𝐺 → (𝑘(PathsOn‘)𝑛) = (𝑘(PathsOn‘𝐺)𝑛))
1716breqd 5118 . . . . . . 7 ( = 𝐺 → (𝑓(𝑘(PathsOn‘)𝑛)𝑝𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
18172exbidv 1924 . . . . . 6 ( = 𝐺 → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
1914, 18raleqbidv 3319 . . . . 5 ( = 𝐺 → (∀𝑛 ∈ ((Vtx‘) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2013, 19raleqbidv 3319 . . . 4 ( = 𝐺 → (∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ ((Vtx‘) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
21 fveq2 6858 . . . . . 6 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
2221difeq1d 4088 . . . . . . 7 (𝑔 = → ((Vtx‘𝑔) ∖ {𝑘}) = ((Vtx‘) ∖ {𝑘}))
23 fveq2 6858 . . . . . . . . . 10 (𝑔 = → (PathsOn‘𝑔) = (PathsOn‘))
2423oveqd 7404 . . . . . . . . 9 (𝑔 = → (𝑘(PathsOn‘𝑔)𝑛) = (𝑘(PathsOn‘)𝑛))
2524breqd 5118 . . . . . . . 8 (𝑔 = → (𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝𝑓(𝑘(PathsOn‘)𝑛)𝑝))
26252exbidv 1924 . . . . . . 7 (𝑔 = → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2722, 26raleqbidv 3319 . . . . . 6 (𝑔 = → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ ((Vtx‘) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2821, 27raleqbidv 3319 . . . . 5 (𝑔 = → (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ ((Vtx‘) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2928cbvabv 2799 . . . 4 {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = { ∣ ∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ ((Vtx‘) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝}
3020, 29elab2g 3647 . . 3 (𝐺𝑊 → (𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
3110, 30bitrid 283 . 2 (𝐺𝑊 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
322, 31bitrid 283 1 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  [wsbc 3753  cdif 3911  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  PathsOncpthson 29642  ConnGraphcconngr 30115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-wlks 29527  df-wlkson 29528  df-trls 29620  df-trlson 29621  df-pths 29644  df-pthson 29646  df-conngr 30116
This theorem is referenced by:  cusconngr  30120  frgrconngr  30223
  Copyright terms: Public domain W3C validator