Step | Hyp | Ref
| Expression |
1 | | dfconngr1 28531 |
. . 3
⊢ ConnGraph
= {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |
2 | 1 | eleq2i 2831 |
. 2
⊢ (𝐺 ∈ ConnGraph ↔ 𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}) |
3 | | fvex 6781 |
. . . . . 6
⊢
(Vtx‘𝑔) ∈
V |
4 | | id 22 |
. . . . . . 7
⊢ (𝑣 = (Vtx‘𝑔) → 𝑣 = (Vtx‘𝑔)) |
5 | | difeq1 4054 |
. . . . . . . 8
⊢ (𝑣 = (Vtx‘𝑔) → (𝑣 ∖ {𝑘}) = ((Vtx‘𝑔) ∖ {𝑘})) |
6 | 5 | raleqdv 3346 |
. . . . . . 7
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
7 | 4, 6 | raleqbidv 3334 |
. . . . . 6
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
8 | 3, 7 | sbcie 3762 |
. . . . 5
⊢
([(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) |
9 | 8 | abbii 2809 |
. . . 4
⊢ {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |
10 | 9 | eleq2i 2831 |
. . 3
⊢ (𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ 𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}) |
11 | | fveq2 6768 |
. . . . . 6
⊢ (ℎ = 𝐺 → (Vtx‘ℎ) = (Vtx‘𝐺)) |
12 | | isconngr.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
13 | 11, 12 | eqtr4di 2797 |
. . . . 5
⊢ (ℎ = 𝐺 → (Vtx‘ℎ) = 𝑉) |
14 | 13 | difeq1d 4060 |
. . . . . 6
⊢ (ℎ = 𝐺 → ((Vtx‘ℎ) ∖ {𝑘}) = (𝑉 ∖ {𝑘})) |
15 | | fveq2 6768 |
. . . . . . . . 9
⊢ (ℎ = 𝐺 → (PathsOn‘ℎ) = (PathsOn‘𝐺)) |
16 | 15 | oveqd 7285 |
. . . . . . . 8
⊢ (ℎ = 𝐺 → (𝑘(PathsOn‘ℎ)𝑛) = (𝑘(PathsOn‘𝐺)𝑛)) |
17 | 16 | breqd 5089 |
. . . . . . 7
⊢ (ℎ = 𝐺 → (𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝 ↔ 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
18 | 17 | 2exbidv 1930 |
. . . . . 6
⊢ (ℎ = 𝐺 → (∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
19 | 14, 18 | raleqbidv 3334 |
. . . . 5
⊢ (ℎ = 𝐺 → (∀𝑛 ∈ ((Vtx‘ℎ) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
20 | 13, 19 | raleqbidv 3334 |
. . . 4
⊢ (ℎ = 𝐺 → (∀𝑘 ∈ (Vtx‘ℎ)∀𝑛 ∈ ((Vtx‘ℎ) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
21 | | fveq2 6768 |
. . . . . 6
⊢ (𝑔 = ℎ → (Vtx‘𝑔) = (Vtx‘ℎ)) |
22 | 21 | difeq1d 4060 |
. . . . . . 7
⊢ (𝑔 = ℎ → ((Vtx‘𝑔) ∖ {𝑘}) = ((Vtx‘ℎ) ∖ {𝑘})) |
23 | | fveq2 6768 |
. . . . . . . . . 10
⊢ (𝑔 = ℎ → (PathsOn‘𝑔) = (PathsOn‘ℎ)) |
24 | 23 | oveqd 7285 |
. . . . . . . . 9
⊢ (𝑔 = ℎ → (𝑘(PathsOn‘𝑔)𝑛) = (𝑘(PathsOn‘ℎ)𝑛)) |
25 | 24 | breqd 5089 |
. . . . . . . 8
⊢ (𝑔 = ℎ → (𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝)) |
26 | 25 | 2exbidv 1930 |
. . . . . . 7
⊢ (𝑔 = ℎ → (∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝)) |
27 | 22, 26 | raleqbidv 3334 |
. . . . . 6
⊢ (𝑔 = ℎ → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ ((Vtx‘ℎ) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝)) |
28 | 21, 27 | raleqbidv 3334 |
. . . . 5
⊢ (𝑔 = ℎ → (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘ℎ)∀𝑛 ∈ ((Vtx‘ℎ) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝)) |
29 | 28 | cbvabv 2812 |
. . . 4
⊢ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {ℎ ∣ ∀𝑘 ∈ (Vtx‘ℎ)∀𝑛 ∈ ((Vtx‘ℎ) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝} |
30 | 20, 29 | elab2g 3612 |
. . 3
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
31 | 10, 30 | syl5bb 282 |
. 2
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
32 | 2, 31 | syl5bb 282 |
1
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |