Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isldepslvec2 Structured version   Visualization version   GIF version

Theorem isldepslvec2 44539
Description: Alternative definition of being a linearly dependent subset of a (left) vector space. In this case, the reverse implication of islindeps2 44537 holds, so that both definitions are equivalent (see theorem 1.6 in [Roman] p. 46 and the note in [Roman] p. 112: if a nontrivial linear combination of elements (where not all of the coefficients are 0) in an R-vector space is 0, then and only then each of the elements is a linear combination of the others. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps2.b 𝐵 = (Base‘𝑀)
islindeps2.z 𝑍 = (0g𝑀)
islindeps2.r 𝑅 = (Scalar‘𝑀)
islindeps2.e 𝐸 = (Base‘𝑅)
islindeps2.0 0 = (0g𝑅)
Assertion
Ref Expression
isldepslvec2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝐸,𝑠   𝑓,𝑀,𝑠   𝑅,𝑓,𝑠   𝑆,𝑓,𝑠   𝑓,𝑍,𝑠   0 ,𝑓,𝑠

Proof of Theorem isldepslvec2
Dummy variables 𝑔 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lveclmod 19877 . . . 4 (𝑀 ∈ LVec → 𝑀 ∈ LMod)
21adantr 483 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod)
3 simpr 487 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵)
4 islindeps2.r . . . . . 6 𝑅 = (Scalar‘𝑀)
54lvecdrng 19876 . . . . 5 (𝑀 ∈ LVec → 𝑅 ∈ DivRing)
6 drngnzr 20034 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
75, 6syl 17 . . . 4 (𝑀 ∈ LVec → 𝑅 ∈ NzRing)
87adantr 483 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑅 ∈ NzRing)
9 islindeps2.b . . . 4 𝐵 = (Base‘𝑀)
10 islindeps2.z . . . 4 𝑍 = (0g𝑀)
11 islindeps2.e . . . 4 𝐸 = (Base‘𝑅)
12 islindeps2.0 . . . 4 0 = (0g𝑅)
139, 10, 4, 11, 12islindeps2 44537 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
142, 3, 8, 13syl3anc 1367 . 2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
159, 10, 4, 11, 12islindeps 44507 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
16 df-3an 1085 . . . . . . 7 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
17 r19.42v 3350 . . . . . . 7 (∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
1816, 17bitr4i 280 . . . . . 6 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
1918rexbii 3247 . . . . 5 (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑔 ∈ (𝐸m 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
20 rexcom 3355 . . . . 5 (∃𝑔 ∈ (𝐸m 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
2119, 20bitri 277 . . . 4 (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
22 simplr 767 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑆 ∈ 𝒫 𝐵)
231ad2antrr 724 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑀 ∈ LMod)
24 simpr 487 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑠𝑆)
2522, 23, 243jca 1124 . . . . . . . . 9 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆))
2625ad2antrr 724 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆))
27 simplr 767 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑔 ∈ (𝐸m 𝑆))
28 elmapi 8427 . . . . . . . . . . 11 (𝑔 ∈ (𝐸m 𝑆) → 𝑔:𝑆𝐸)
29 ffvelrn 6848 . . . . . . . . . . 11 ((𝑔:𝑆𝐸𝑠𝑆) → (𝑔𝑠) ∈ 𝐸)
3028, 24, 29syl2anr 598 . . . . . . . . . 10 ((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) → (𝑔𝑠) ∈ 𝐸)
31 simpr 487 . . . . . . . . . 10 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → (𝑔𝑠) ≠ 0 )
3230, 31anim12i 614 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 ))
335ad2antrr 724 . . . . . . . . . . 11 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑅 ∈ DivRing)
3433ad2antrr 724 . . . . . . . . . 10 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑅 ∈ DivRing)
35 eqid 2821 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
3611, 35, 12drngunit 19506 . . . . . . . . . 10 (𝑅 ∈ DivRing → ((𝑔𝑠) ∈ (Unit‘𝑅) ↔ ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 )))
3734, 36syl 17 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑔𝑠) ∈ (Unit‘𝑅) ↔ ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 )))
3832, 37mpbird 259 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔𝑠) ∈ (Unit‘𝑅))
39 simpll 765 . . . . . . . . 9 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → 𝑔 finSupp 0 )
4039adantl 484 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑔 finSupp 0 )
41 eqid 2821 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
42 eqid 2821 . . . . . . . . 9 (invr𝑅) = (invr𝑅)
43 eqid 2821 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
44 eqid 2821 . . . . . . . . 9 (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))
459, 4, 11, 35, 12, 10, 41, 42, 43, 44lincresunit2 44532 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸m 𝑆) ∧ (𝑔𝑠) ∈ (Unit‘𝑅) ∧ 𝑔 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 )
4626, 27, 38, 40, 45syl13anc 1368 . . . . . . 7 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 )
47 simpll 765 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑀 ∈ LVec)
4822, 47, 243jca 1124 . . . . . . . . 9 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆))
4948ad2antrr 724 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆))
50 simprr 771 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔𝑠) ≠ 0 )
51 simplr 767 . . . . . . . . 9 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → (𝑔( linC ‘𝑀)𝑆) = 𝑍)
5251adantl 484 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔( linC ‘𝑀)𝑆) = 𝑍)
53 fveq2 6669 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑔𝑧) = (𝑔𝑦))
5453oveq2d 7171 . . . . . . . . . 10 (𝑧 = 𝑦 → (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)) = (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑦)))
5554cbvmptv 5168 . . . . . . . . 9 (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) = (𝑦 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑦)))
569, 4, 11, 35, 12, 10, 41, 42, 43, 55lincreslvec3 44536 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸m 𝑆) ∧ (𝑔𝑠) ≠ 0𝑔 finSupp 0 ) ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) → ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
5749, 27, 50, 40, 52, 56syl131anc 1379 . . . . . . 7 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
589, 4, 11, 35, 12, 10, 41, 42, 43, 44lincresunit1 44531 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸m 𝑆) ∧ (𝑔𝑠) ∈ (Unit‘𝑅))) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) ∈ (𝐸m (𝑆 ∖ {𝑠})))
5926, 27, 38, 58syl12anc 834 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) ∈ (𝐸m (𝑆 ∖ {𝑠})))
60 breq1 5068 . . . . . . . . . 10 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → (𝑓 finSupp 0 ↔ (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ))
61 oveq1 7162 . . . . . . . . . . 11 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})))
6261eqeq1d 2823 . . . . . . . . . 10 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠))
6360, 62anbi12d 632 . . . . . . . . 9 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6463adantl 484 . . . . . . . 8 ((((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) ∧ 𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6559, 64rspcedv 3615 . . . . . . 7 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6646, 57, 65mp2and 697 . . . . . 6 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ∃𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠))
6766rexlimdva2 3287 . . . . 5 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (∃𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → ∃𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6867reximdva 3274 . . . 4 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6921, 68syl5bi 244 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) → ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
7015, 69sylbid 242 . 2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 → ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
7114, 70impbid 214 1 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wrex 3139  cdif 3932  𝒫 cpw 4538  {csn 4566   class class class wbr 5065  cmpt 5145  wf 6350  cfv 6354  (class class class)co 7155  m cmap 8405   finSupp cfsupp 8832  Basecbs 16482  .rcmulr 16565  Scalarcsca 16567  0gc0g 16712  invgcminusg 18103  Unitcui 19388  invrcinvr 19420  DivRingcdr 19501  LModclmod 19633  LVecclvec 19873  NzRingcnzr 20029   linC clinc 44458   linDepS clindeps 44495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-seq 13369  df-hash 13690  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-0g 16714  df-gsum 16715  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-mulg 18224  df-ghm 18355  df-cntz 18446  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-drng 19503  df-lmod 19635  df-lvec 19874  df-nzr 20030  df-linc 44460  df-lininds 44496  df-lindeps 44498
This theorem is referenced by:  ldepslinc  44563
  Copyright terms: Public domain W3C validator