Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isldepslvec2 Structured version   Visualization version   GIF version

Theorem isldepslvec2 48214
Description: Alternative definition of being a linearly dependent subset of a (left) vector space. In this case, the reverse implication of islindeps2 48212 holds, so that both definitions are equivalent (see theorem 1.6 in [Roman] p. 46 and the note in [Roman] p. 112: if a nontrivial linear combination of elements (where not all of the coefficients are 0) in an R-vector space is 0, then and only then each of the elements is a linear combination of the others. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps2.b 𝐵 = (Base‘𝑀)
islindeps2.z 𝑍 = (0g𝑀)
islindeps2.r 𝑅 = (Scalar‘𝑀)
islindeps2.e 𝐸 = (Base‘𝑅)
islindeps2.0 0 = (0g𝑅)
Assertion
Ref Expression
isldepslvec2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝐸,𝑠   𝑓,𝑀,𝑠   𝑅,𝑓,𝑠   𝑆,𝑓,𝑠   𝑓,𝑍,𝑠   0 ,𝑓,𝑠

Proof of Theorem isldepslvec2
Dummy variables 𝑔 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lveclmod 21128 . . . 4 (𝑀 ∈ LVec → 𝑀 ∈ LMod)
21adantr 480 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod)
3 simpr 484 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵)
4 islindeps2.r . . . . . 6 𝑅 = (Scalar‘𝑀)
54lvecdrng 21127 . . . . 5 (𝑀 ∈ LVec → 𝑅 ∈ DivRing)
6 drngnzr 20770 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
75, 6syl 17 . . . 4 (𝑀 ∈ LVec → 𝑅 ∈ NzRing)
87adantr 480 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑅 ∈ NzRing)
9 islindeps2.b . . . 4 𝐵 = (Base‘𝑀)
10 islindeps2.z . . . 4 𝑍 = (0g𝑀)
11 islindeps2.e . . . 4 𝐸 = (Base‘𝑅)
12 islindeps2.0 . . . 4 0 = (0g𝑅)
139, 10, 4, 11, 12islindeps2 48212 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
142, 3, 8, 13syl3anc 1371 . 2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
159, 10, 4, 11, 12islindeps 48182 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
16 df-3an 1089 . . . . . . 7 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
17 r19.42v 3197 . . . . . . 7 (∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
1816, 17bitr4i 278 . . . . . 6 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
1918rexbii 3100 . . . . 5 (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑔 ∈ (𝐸m 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
20 rexcom 3296 . . . . 5 (∃𝑔 ∈ (𝐸m 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
2119, 20bitri 275 . . . 4 (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
22 simplr 768 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑆 ∈ 𝒫 𝐵)
231ad2antrr 725 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑀 ∈ LMod)
24 simpr 484 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑠𝑆)
2522, 23, 243jca 1128 . . . . . . . . 9 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆))
2625ad2antrr 725 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆))
27 simplr 768 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑔 ∈ (𝐸m 𝑆))
28 elmapi 8907 . . . . . . . . . . 11 (𝑔 ∈ (𝐸m 𝑆) → 𝑔:𝑆𝐸)
29 ffvelcdm 7115 . . . . . . . . . . 11 ((𝑔:𝑆𝐸𝑠𝑆) → (𝑔𝑠) ∈ 𝐸)
3028, 24, 29syl2anr 596 . . . . . . . . . 10 ((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) → (𝑔𝑠) ∈ 𝐸)
31 simpr 484 . . . . . . . . . 10 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → (𝑔𝑠) ≠ 0 )
3230, 31anim12i 612 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 ))
335ad2antrr 725 . . . . . . . . . . 11 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑅 ∈ DivRing)
3433ad2antrr 725 . . . . . . . . . 10 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑅 ∈ DivRing)
35 eqid 2740 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
3611, 35, 12drngunit 20756 . . . . . . . . . 10 (𝑅 ∈ DivRing → ((𝑔𝑠) ∈ (Unit‘𝑅) ↔ ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 )))
3734, 36syl 17 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑔𝑠) ∈ (Unit‘𝑅) ↔ ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 )))
3832, 37mpbird 257 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔𝑠) ∈ (Unit‘𝑅))
39 simpll 766 . . . . . . . . 9 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → 𝑔 finSupp 0 )
4039adantl 481 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑔 finSupp 0 )
41 eqid 2740 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
42 eqid 2740 . . . . . . . . 9 (invr𝑅) = (invr𝑅)
43 eqid 2740 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
44 eqid 2740 . . . . . . . . 9 (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))
459, 4, 11, 35, 12, 10, 41, 42, 43, 44lincresunit2 48207 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸m 𝑆) ∧ (𝑔𝑠) ∈ (Unit‘𝑅) ∧ 𝑔 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 )
4626, 27, 38, 40, 45syl13anc 1372 . . . . . . 7 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 )
47 simpll 766 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑀 ∈ LVec)
4822, 47, 243jca 1128 . . . . . . . . 9 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆))
4948ad2antrr 725 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆))
50 simprr 772 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔𝑠) ≠ 0 )
51 simplr 768 . . . . . . . . 9 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → (𝑔( linC ‘𝑀)𝑆) = 𝑍)
5251adantl 481 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔( linC ‘𝑀)𝑆) = 𝑍)
53 fveq2 6920 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑔𝑧) = (𝑔𝑦))
5453oveq2d 7464 . . . . . . . . . 10 (𝑧 = 𝑦 → (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)) = (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑦)))
5554cbvmptv 5279 . . . . . . . . 9 (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) = (𝑦 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑦)))
569, 4, 11, 35, 12, 10, 41, 42, 43, 55lincreslvec3 48211 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸m 𝑆) ∧ (𝑔𝑠) ≠ 0𝑔 finSupp 0 ) ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) → ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
5749, 27, 50, 40, 52, 56syl131anc 1383 . . . . . . 7 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
589, 4, 11, 35, 12, 10, 41, 42, 43, 44lincresunit1 48206 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸m 𝑆) ∧ (𝑔𝑠) ∈ (Unit‘𝑅))) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) ∈ (𝐸m (𝑆 ∖ {𝑠})))
5926, 27, 38, 58syl12anc 836 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) ∈ (𝐸m (𝑆 ∖ {𝑠})))
60 breq1 5169 . . . . . . . . . 10 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → (𝑓 finSupp 0 ↔ (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ))
61 oveq1 7455 . . . . . . . . . . 11 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})))
6261eqeq1d 2742 . . . . . . . . . 10 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠))
6360, 62anbi12d 631 . . . . . . . . 9 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6463adantl 481 . . . . . . . 8 ((((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) ∧ 𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6559, 64rspcedv 3628 . . . . . . 7 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6646, 57, 65mp2and 698 . . . . . 6 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ∃𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠))
6766rexlimdva2 3163 . . . . 5 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (∃𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → ∃𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6867reximdva 3174 . . . 4 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6921, 68biimtrid 242 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) → ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
7015, 69sylbid 240 . 2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 → ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
7114, 70impbid 212 1 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cdif 3973  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884   finSupp cfsupp 9431  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314  0gc0g 17499  invgcminusg 18974  Unitcui 20381  invrcinvr 20413  NzRingcnzr 20538  DivRingcdr 20751  LModclmod 20880  LVecclvec 21124   linC clinc 48133   linDepS clindeps 48170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-nzr 20539  df-drng 20753  df-lmod 20882  df-lvec 21125  df-linc 48135  df-lininds 48171  df-lindeps 48173
This theorem is referenced by:  ldepslinc  48238
  Copyright terms: Public domain W3C validator