Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isldepslvec2 Structured version   Visualization version   GIF version

Theorem isldepslvec2 47006
Description: Alternative definition of being a linearly dependent subset of a (left) vector space. In this case, the reverse implication of islindeps2 47004 holds, so that both definitions are equivalent (see theorem 1.6 in [Roman] p. 46 and the note in [Roman] p. 112: if a nontrivial linear combination of elements (where not all of the coefficients are 0) in an R-vector space is 0, then and only then each of the elements is a linear combination of the others. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps2.b 𝐵 = (Base‘𝑀)
islindeps2.z 𝑍 = (0g𝑀)
islindeps2.r 𝑅 = (Scalar‘𝑀)
islindeps2.e 𝐸 = (Base‘𝑅)
islindeps2.0 0 = (0g𝑅)
Assertion
Ref Expression
isldepslvec2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝐸,𝑠   𝑓,𝑀,𝑠   𝑅,𝑓,𝑠   𝑆,𝑓,𝑠   𝑓,𝑍,𝑠   0 ,𝑓,𝑠

Proof of Theorem isldepslvec2
Dummy variables 𝑔 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lveclmod 20694 . . . 4 (𝑀 ∈ LVec → 𝑀 ∈ LMod)
21adantr 482 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod)
3 simpr 486 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵)
4 islindeps2.r . . . . . 6 𝑅 = (Scalar‘𝑀)
54lvecdrng 20693 . . . . 5 (𝑀 ∈ LVec → 𝑅 ∈ DivRing)
6 drngnzr 20312 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
75, 6syl 17 . . . 4 (𝑀 ∈ LVec → 𝑅 ∈ NzRing)
87adantr 482 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑅 ∈ NzRing)
9 islindeps2.b . . . 4 𝐵 = (Base‘𝑀)
10 islindeps2.z . . . 4 𝑍 = (0g𝑀)
11 islindeps2.e . . . 4 𝐸 = (Base‘𝑅)
12 islindeps2.0 . . . 4 0 = (0g𝑅)
139, 10, 4, 11, 12islindeps2 47004 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
142, 3, 8, 13syl3anc 1372 . 2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
159, 10, 4, 11, 12islindeps 46974 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
16 df-3an 1090 . . . . . . 7 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
17 r19.42v 3191 . . . . . . 7 (∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
1816, 17bitr4i 278 . . . . . 6 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
1918rexbii 3095 . . . . 5 (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑔 ∈ (𝐸m 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
20 rexcom 3288 . . . . 5 (∃𝑔 ∈ (𝐸m 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
2119, 20bitri 275 . . . 4 (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
22 simplr 768 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑆 ∈ 𝒫 𝐵)
231ad2antrr 725 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑀 ∈ LMod)
24 simpr 486 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑠𝑆)
2522, 23, 243jca 1129 . . . . . . . . 9 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆))
2625ad2antrr 725 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆))
27 simplr 768 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑔 ∈ (𝐸m 𝑆))
28 elmapi 8831 . . . . . . . . . . 11 (𝑔 ∈ (𝐸m 𝑆) → 𝑔:𝑆𝐸)
29 ffvelcdm 7071 . . . . . . . . . . 11 ((𝑔:𝑆𝐸𝑠𝑆) → (𝑔𝑠) ∈ 𝐸)
3028, 24, 29syl2anr 598 . . . . . . . . . 10 ((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) → (𝑔𝑠) ∈ 𝐸)
31 simpr 486 . . . . . . . . . 10 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → (𝑔𝑠) ≠ 0 )
3230, 31anim12i 614 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 ))
335ad2antrr 725 . . . . . . . . . . 11 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑅 ∈ DivRing)
3433ad2antrr 725 . . . . . . . . . 10 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑅 ∈ DivRing)
35 eqid 2733 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
3611, 35, 12drngunit 20298 . . . . . . . . . 10 (𝑅 ∈ DivRing → ((𝑔𝑠) ∈ (Unit‘𝑅) ↔ ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 )))
3734, 36syl 17 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑔𝑠) ∈ (Unit‘𝑅) ↔ ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 )))
3832, 37mpbird 257 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔𝑠) ∈ (Unit‘𝑅))
39 simpll 766 . . . . . . . . 9 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → 𝑔 finSupp 0 )
4039adantl 483 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑔 finSupp 0 )
41 eqid 2733 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
42 eqid 2733 . . . . . . . . 9 (invr𝑅) = (invr𝑅)
43 eqid 2733 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
44 eqid 2733 . . . . . . . . 9 (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))
459, 4, 11, 35, 12, 10, 41, 42, 43, 44lincresunit2 46999 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸m 𝑆) ∧ (𝑔𝑠) ∈ (Unit‘𝑅) ∧ 𝑔 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 )
4626, 27, 38, 40, 45syl13anc 1373 . . . . . . 7 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 )
47 simpll 766 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑀 ∈ LVec)
4822, 47, 243jca 1129 . . . . . . . . 9 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆))
4948ad2antrr 725 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆))
50 simprr 772 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔𝑠) ≠ 0 )
51 simplr 768 . . . . . . . . 9 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → (𝑔( linC ‘𝑀)𝑆) = 𝑍)
5251adantl 483 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔( linC ‘𝑀)𝑆) = 𝑍)
53 fveq2 6881 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑔𝑧) = (𝑔𝑦))
5453oveq2d 7412 . . . . . . . . . 10 (𝑧 = 𝑦 → (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)) = (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑦)))
5554cbvmptv 5257 . . . . . . . . 9 (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) = (𝑦 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑦)))
569, 4, 11, 35, 12, 10, 41, 42, 43, 55lincreslvec3 47003 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸m 𝑆) ∧ (𝑔𝑠) ≠ 0𝑔 finSupp 0 ) ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) → ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
5749, 27, 50, 40, 52, 56syl131anc 1384 . . . . . . 7 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
589, 4, 11, 35, 12, 10, 41, 42, 43, 44lincresunit1 46998 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸m 𝑆) ∧ (𝑔𝑠) ∈ (Unit‘𝑅))) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) ∈ (𝐸m (𝑆 ∖ {𝑠})))
5926, 27, 38, 58syl12anc 836 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) ∈ (𝐸m (𝑆 ∖ {𝑠})))
60 breq1 5147 . . . . . . . . . 10 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → (𝑓 finSupp 0 ↔ (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ))
61 oveq1 7403 . . . . . . . . . . 11 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})))
6261eqeq1d 2735 . . . . . . . . . 10 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠))
6360, 62anbi12d 632 . . . . . . . . 9 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6463adantl 483 . . . . . . . 8 ((((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) ∧ 𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6559, 64rspcedv 3604 . . . . . . 7 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6646, 57, 65mp2and 698 . . . . . 6 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸m 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ∃𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠))
6766rexlimdva2 3158 . . . . 5 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (∃𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → ∃𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6867reximdva 3169 . . . 4 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6921, 68biimtrid 241 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) → ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
7015, 69sylbid 239 . 2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 → ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
7114, 70impbid 211 1 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wrex 3071  cdif 3943  𝒫 cpw 4598  {csn 4624   class class class wbr 5144  cmpt 5227  wf 6531  cfv 6535  (class class class)co 7396  m cmap 8808   finSupp cfsupp 9349  Basecbs 17131  .rcmulr 17185  Scalarcsca 17187  0gc0g 17372  invgcminusg 18807  Unitcui 20147  invrcinvr 20179  NzRingcnzr 20269  DivRingcdr 20293  LModclmod 20448  LVecclvec 20690   linC clinc 46925   linDepS clindeps 46962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-iin 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-of 7657  df-om 7843  df-1st 7962  df-2nd 7963  df-supp 8134  df-tpos 8198  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-map 8810  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-fsupp 9350  df-oi 9492  df-card 9921  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-2 12262  df-3 12263  df-n0 12460  df-z 12546  df-uz 12810  df-fz 13472  df-fzo 13615  df-seq 13954  df-hash 14278  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-0g 17374  df-gsum 17375  df-mre 17517  df-mrc 17518  df-acs 17520  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-mhm 18658  df-submnd 18659  df-grp 18809  df-minusg 18810  df-mulg 18936  df-ghm 19075  df-cntz 19166  df-cmn 19634  df-abl 19635  df-mgp 19971  df-ur 19988  df-ring 20040  df-oppr 20128  df-dvdsr 20149  df-unit 20150  df-invr 20180  df-nzr 20270  df-drng 20295  df-lmod 20450  df-lvec 20691  df-linc 46927  df-lininds 46963  df-lindeps 46965
This theorem is referenced by:  ldepslinc  47030
  Copyright terms: Public domain W3C validator