Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isldepslvec2 Structured version   Visualization version   GIF version

Theorem isldepslvec2 42799
Description: Alternative definition of being a linearly dependent subset of a (left) vector space. In this case, the reverse implication of islindeps2 42797 holds, so that both definitions are equivalent (see theorem 1.6 in [Roman] p. 46 and the note in [Roman] p. 112: if a nontrivial linear combination of elements (where not all of the coefficients are 0) in an R-vector space is 0, then and only then each of the elements is a linear combination of the others. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps2.b 𝐵 = (Base‘𝑀)
islindeps2.z 𝑍 = (0g𝑀)
islindeps2.r 𝑅 = (Scalar‘𝑀)
islindeps2.e 𝐸 = (Base‘𝑅)
islindeps2.0 0 = (0g𝑅)
Assertion
Ref Expression
isldepslvec2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝐸,𝑠   𝑓,𝑀,𝑠   𝑅,𝑓,𝑠   𝑆,𝑓,𝑠   𝑓,𝑍,𝑠   0 ,𝑓,𝑠

Proof of Theorem isldepslvec2
Dummy variables 𝑔 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lveclmod 19315 . . . 4 (𝑀 ∈ LVec → 𝑀 ∈ LMod)
21adantr 466 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod)
3 simpr 471 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵)
4 islindeps2.r . . . . . 6 𝑅 = (Scalar‘𝑀)
54lvecdrng 19314 . . . . 5 (𝑀 ∈ LVec → 𝑅 ∈ DivRing)
6 drngnzr 19473 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
75, 6syl 17 . . . 4 (𝑀 ∈ LVec → 𝑅 ∈ NzRing)
87adantr 466 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑅 ∈ NzRing)
9 islindeps2.b . . . 4 𝐵 = (Base‘𝑀)
10 islindeps2.z . . . 4 𝑍 = (0g𝑀)
11 islindeps2.e . . . 4 𝐸 = (Base‘𝑅)
12 islindeps2.0 . . . 4 0 = (0g𝑅)
139, 10, 4, 11, 12islindeps2 42797 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
142, 3, 8, 13syl3anc 1476 . 2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
159, 10, 4, 11, 12islindeps 42767 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
16 df-3an 1073 . . . . . . 7 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
17 r19.42v 3240 . . . . . . 7 (∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
1816, 17bitr4i 267 . . . . . 6 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
1918rexbii 3189 . . . . 5 (∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑔 ∈ (𝐸𝑚 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
20 rexcom 3247 . . . . 5 (∃𝑔 ∈ (𝐸𝑚 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
2119, 20bitri 264 . . . 4 (∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
22 simplr 752 . . . . . . . . . . 11 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑆 ∈ 𝒫 𝐵)
231ad2antrr 705 . . . . . . . . . . 11 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑀 ∈ LMod)
24 simpr 471 . . . . . . . . . . 11 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑠𝑆)
2522, 23, 243jca 1122 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆))
2625ad2antrr 705 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆))
27 simplr 752 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑔 ∈ (𝐸𝑚 𝑆))
28 elmapi 8031 . . . . . . . . . . . 12 (𝑔 ∈ (𝐸𝑚 𝑆) → 𝑔:𝑆𝐸)
29 ffvelrn 6499 . . . . . . . . . . . 12 ((𝑔:𝑆𝐸𝑠𝑆) → (𝑔𝑠) ∈ 𝐸)
3028, 24, 29syl2anr 584 . . . . . . . . . . 11 ((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) → (𝑔𝑠) ∈ 𝐸)
31 simpr 471 . . . . . . . . . . 11 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → (𝑔𝑠) ≠ 0 )
3230, 31anim12i 600 . . . . . . . . . 10 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 ))
335ad2antrr 705 . . . . . . . . . . . 12 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑅 ∈ DivRing)
3433ad2antrr 705 . . . . . . . . . . 11 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑅 ∈ DivRing)
35 eqid 2771 . . . . . . . . . . . 12 (Unit‘𝑅) = (Unit‘𝑅)
3611, 35, 12drngunit 18958 . . . . . . . . . . 11 (𝑅 ∈ DivRing → ((𝑔𝑠) ∈ (Unit‘𝑅) ↔ ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 )))
3734, 36syl 17 . . . . . . . . . 10 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑔𝑠) ∈ (Unit‘𝑅) ↔ ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 )))
3832, 37mpbird 247 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔𝑠) ∈ (Unit‘𝑅))
39 simpll 750 . . . . . . . . . 10 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → 𝑔 finSupp 0 )
4039adantl 467 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑔 finSupp 0 )
41 eqid 2771 . . . . . . . . . 10 (invg𝑅) = (invg𝑅)
42 eqid 2771 . . . . . . . . . 10 (invr𝑅) = (invr𝑅)
43 eqid 2771 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
44 eqid 2771 . . . . . . . . . 10 (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))
459, 4, 11, 35, 12, 10, 41, 42, 43, 44lincresunit2 42792 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸𝑚 𝑆) ∧ (𝑔𝑠) ∈ (Unit‘𝑅) ∧ 𝑔 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 )
4626, 27, 38, 40, 45syl13anc 1478 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 )
47 simpll 750 . . . . . . . . . . 11 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑀 ∈ LVec)
4822, 47, 243jca 1122 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆))
4948ad2antrr 705 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆))
50 simprr 756 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔𝑠) ≠ 0 )
51 simplr 752 . . . . . . . . . 10 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → (𝑔( linC ‘𝑀)𝑆) = 𝑍)
5251adantl 467 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔( linC ‘𝑀)𝑆) = 𝑍)
53 fveq2 6330 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑔𝑧) = (𝑔𝑦))
5453oveq2d 6808 . . . . . . . . . . 11 (𝑧 = 𝑦 → (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)) = (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑦)))
5554cbvmptv 4884 . . . . . . . . . 10 (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) = (𝑦 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑦)))
569, 4, 11, 35, 12, 10, 41, 42, 43, 55lincreslvec3 42796 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸𝑚 𝑆) ∧ (𝑔𝑠) ≠ 0𝑔 finSupp 0 ) ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) → ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
5749, 27, 50, 40, 52, 56syl131anc 1489 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
589, 4, 11, 35, 12, 10, 41, 42, 43, 44lincresunit1 42791 . . . . . . . . . 10 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸𝑚 𝑆) ∧ (𝑔𝑠) ∈ (Unit‘𝑅))) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) ∈ (𝐸𝑚 (𝑆 ∖ {𝑠})))
5926, 27, 38, 58syl12anc 1474 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) ∈ (𝐸𝑚 (𝑆 ∖ {𝑠})))
60 breq1 4789 . . . . . . . . . . 11 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → (𝑓 finSupp 0 ↔ (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ))
61 oveq1 6799 . . . . . . . . . . . 12 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})))
6261eqeq1d 2773 . . . . . . . . . . 11 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠))
6360, 62anbi12d 616 . . . . . . . . . 10 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6463adantl 467 . . . . . . . . 9 ((((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) ∧ 𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6559, 64rspcedv 3464 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6646, 57, 65mp2and 679 . . . . . . 7 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠))
6766ex 397 . . . . . 6 ((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) → (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → ∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6867rexlimdva 3179 . . . . 5 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (∃𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → ∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6968reximdva 3165 . . . 4 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → ∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
7021, 69syl5bi 232 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) → ∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
7115, 70sylbid 230 . 2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 → ∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
7214, 71impbid 202 1 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  cdif 3720  𝒫 cpw 4297  {csn 4316   class class class wbr 4786  cmpt 4863  wf 6025  cfv 6029  (class class class)co 6792  𝑚 cmap 8009   finSupp cfsupp 8431  Basecbs 16060  .rcmulr 16146  Scalarcsca 16148  0gc0g 16304  invgcminusg 17627  Unitcui 18843  invrcinvr 18875  DivRingcdr 18953  LModclmod 19069  LVecclvec 19311  NzRingcnzr 19468   linC clinc 42718   linDepS clindeps 42755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-n0 11496  df-z 11581  df-uz 11890  df-fz 12530  df-fzo 12670  df-seq 13005  df-hash 13318  df-ndx 16063  df-slot 16064  df-base 16066  df-sets 16067  df-ress 16068  df-plusg 16158  df-mulr 16159  df-0g 16306  df-gsum 16307  df-mre 16450  df-mrc 16451  df-acs 16453  df-mgm 17446  df-sgrp 17488  df-mnd 17499  df-mhm 17539  df-submnd 17540  df-grp 17629  df-minusg 17630  df-mulg 17745  df-ghm 17862  df-cntz 17953  df-cmn 18398  df-abl 18399  df-mgp 18694  df-ur 18706  df-ring 18753  df-oppr 18827  df-dvdsr 18845  df-unit 18846  df-invr 18876  df-drng 18955  df-lmod 19071  df-lvec 19312  df-nzr 19469  df-linc 42720  df-lininds 42756  df-lindeps 42758
This theorem is referenced by:  ldepslinc  42823
  Copyright terms: Public domain W3C validator