Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isldepslvec2 Structured version   Visualization version   GIF version

Theorem isldepslvec2 42836
Description: Alternative definition of being a linearly dependent subset of a (left) vector space. In this case, the reverse implication of islindeps2 42834 holds, so that both definitions are equivalent (see theorem 1.6 in [Roman] p. 46 and the note in [Roman] p. 112: if a nontrivial linear combination of elements (where not all of the coefficients are 0) in an R-vector space is 0, then and only then each of the elements is a linear combination of the others. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps2.b 𝐵 = (Base‘𝑀)
islindeps2.z 𝑍 = (0g𝑀)
islindeps2.r 𝑅 = (Scalar‘𝑀)
islindeps2.e 𝐸 = (Base‘𝑅)
islindeps2.0 0 = (0g𝑅)
Assertion
Ref Expression
isldepslvec2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝐸,𝑠   𝑓,𝑀,𝑠   𝑅,𝑓,𝑠   𝑆,𝑓,𝑠   𝑓,𝑍,𝑠   0 ,𝑓,𝑠

Proof of Theorem isldepslvec2
Dummy variables 𝑔 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lveclmod 19309 . . . 4 (𝑀 ∈ LVec → 𝑀 ∈ LMod)
21adantr 468 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod)
3 simpr 473 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵)
4 islindeps2.r . . . . . 6 𝑅 = (Scalar‘𝑀)
54lvecdrng 19308 . . . . 5 (𝑀 ∈ LVec → 𝑅 ∈ DivRing)
6 drngnzr 19467 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
75, 6syl 17 . . . 4 (𝑀 ∈ LVec → 𝑅 ∈ NzRing)
87adantr 468 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑅 ∈ NzRing)
9 islindeps2.b . . . 4 𝐵 = (Base‘𝑀)
10 islindeps2.z . . . 4 𝑍 = (0g𝑀)
11 islindeps2.e . . . 4 𝐸 = (Base‘𝑅)
12 islindeps2.0 . . . 4 0 = (0g𝑅)
139, 10, 4, 11, 12islindeps2 42834 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
142, 3, 8, 13syl3anc 1483 . 2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
159, 10, 4, 11, 12islindeps 42804 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
16 df-3an 1102 . . . . . . 7 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
17 r19.42v 3280 . . . . . . 7 (∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
1816, 17bitr4i 269 . . . . . 6 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
1918rexbii 3229 . . . . 5 (∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑔 ∈ (𝐸𝑚 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
20 rexcom 3287 . . . . 5 (∃𝑔 ∈ (𝐸𝑚 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
2119, 20bitri 266 . . . 4 (∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
22 simplr 776 . . . . . . . . . . 11 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑆 ∈ 𝒫 𝐵)
231ad2antrr 708 . . . . . . . . . . 11 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑀 ∈ LMod)
24 simpr 473 . . . . . . . . . . 11 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑠𝑆)
2522, 23, 243jca 1151 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆))
2625ad2antrr 708 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆))
27 simplr 776 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑔 ∈ (𝐸𝑚 𝑆))
28 elmapi 8110 . . . . . . . . . . . 12 (𝑔 ∈ (𝐸𝑚 𝑆) → 𝑔:𝑆𝐸)
29 ffvelrn 6575 . . . . . . . . . . . 12 ((𝑔:𝑆𝐸𝑠𝑆) → (𝑔𝑠) ∈ 𝐸)
3028, 24, 29syl2anr 586 . . . . . . . . . . 11 ((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) → (𝑔𝑠) ∈ 𝐸)
31 simpr 473 . . . . . . . . . . 11 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → (𝑔𝑠) ≠ 0 )
3230, 31anim12i 602 . . . . . . . . . 10 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 ))
335ad2antrr 708 . . . . . . . . . . . 12 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑅 ∈ DivRing)
3433ad2antrr 708 . . . . . . . . . . 11 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑅 ∈ DivRing)
35 eqid 2806 . . . . . . . . . . . 12 (Unit‘𝑅) = (Unit‘𝑅)
3611, 35, 12drngunit 18952 . . . . . . . . . . 11 (𝑅 ∈ DivRing → ((𝑔𝑠) ∈ (Unit‘𝑅) ↔ ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 )))
3734, 36syl 17 . . . . . . . . . 10 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑔𝑠) ∈ (Unit‘𝑅) ↔ ((𝑔𝑠) ∈ 𝐸 ∧ (𝑔𝑠) ≠ 0 )))
3832, 37mpbird 248 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔𝑠) ∈ (Unit‘𝑅))
39 simpll 774 . . . . . . . . . 10 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → 𝑔 finSupp 0 )
4039adantl 469 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → 𝑔 finSupp 0 )
41 eqid 2806 . . . . . . . . . 10 (invg𝑅) = (invg𝑅)
42 eqid 2806 . . . . . . . . . 10 (invr𝑅) = (invr𝑅)
43 eqid 2806 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
44 eqid 2806 . . . . . . . . . 10 (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))
459, 4, 11, 35, 12, 10, 41, 42, 43, 44lincresunit2 42829 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸𝑚 𝑆) ∧ (𝑔𝑠) ∈ (Unit‘𝑅) ∧ 𝑔 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 )
4626, 27, 38, 40, 45syl13anc 1484 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 )
47 simpll 774 . . . . . . . . . . 11 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → 𝑀 ∈ LVec)
4822, 47, 243jca 1151 . . . . . . . . . 10 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆))
4948ad2antrr 708 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆))
50 simprr 780 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔𝑠) ≠ 0 )
51 simplr 776 . . . . . . . . . 10 (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → (𝑔( linC ‘𝑀)𝑆) = 𝑍)
5251adantl 469 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑔( linC ‘𝑀)𝑆) = 𝑍)
53 fveq2 6404 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑔𝑧) = (𝑔𝑦))
5453oveq2d 6886 . . . . . . . . . . 11 (𝑧 = 𝑦 → (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)) = (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑦)))
5554cbvmptv 4944 . . . . . . . . . 10 (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) = (𝑦 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑦)))
569, 4, 11, 35, 12, 10, 41, 42, 43, 55lincreslvec3 42833 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸𝑚 𝑆) ∧ (𝑔𝑠) ≠ 0𝑔 finSupp 0 ) ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) → ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
5749, 27, 50, 40, 52, 56syl131anc 1495 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
589, 4, 11, 35, 12, 10, 41, 42, 43, 44lincresunit1 42828 . . . . . . . . . 10 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑠𝑆) ∧ (𝑔 ∈ (𝐸𝑚 𝑆) ∧ (𝑔𝑠) ∈ (Unit‘𝑅))) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) ∈ (𝐸𝑚 (𝑆 ∖ {𝑠})))
5926, 27, 38, 58syl12anc 856 . . . . . . . . 9 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) ∈ (𝐸𝑚 (𝑆 ∖ {𝑠})))
60 breq1 4847 . . . . . . . . . . 11 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → (𝑓 finSupp 0 ↔ (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ))
61 oveq1 6877 . . . . . . . . . . . 12 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})))
6261eqeq1d 2808 . . . . . . . . . . 11 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠))
6360, 62anbi12d 618 . . . . . . . . . 10 (𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6463adantl 469 . . . . . . . . 9 ((((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) ∧ 𝑓 = (𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6559, 64rspcedv 3506 . . . . . . . 8 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → (((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧))) finSupp 0 ∧ ((𝑧 ∈ (𝑆 ∖ {𝑠}) ↦ (((invr𝑅)‘((invg𝑅)‘(𝑔𝑠)))(.r𝑅)(𝑔𝑧)))( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6646, 57, 65mp2and 682 . . . . . . 7 (((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) ∧ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )) → ∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠))
6766ex 399 . . . . . 6 ((((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) ∧ 𝑔 ∈ (𝐸𝑚 𝑆)) → (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → ∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6867rexlimdva 3219 . . . . 5 (((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) ∧ 𝑠𝑆) → (∃𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → ∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
6968reximdva 3204 . . . 4 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) → ∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
7021, 69syl5bi 233 . . 3 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) → ∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
7115, 70sylbid 231 . 2 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 → ∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)))
7214, 71impbid 203 1 ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2978  wrex 3097  cdif 3766  𝒫 cpw 4351  {csn 4370   class class class wbr 4844  cmpt 4923  wf 6093  cfv 6097  (class class class)co 6870  𝑚 cmap 8088   finSupp cfsupp 8510  Basecbs 16064  .rcmulr 16150  Scalarcsca 16152  0gc0g 16301  invgcminusg 17624  Unitcui 18837  invrcinvr 18869  DivRingcdr 18947  LModclmod 19063  LVecclvec 19305  NzRingcnzr 19462   linC clinc 42755   linDepS clindeps 42792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-inf2 8781  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-iin 4715  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-isom 6106  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-of 7123  df-om 7292  df-1st 7394  df-2nd 7395  df-supp 7526  df-tpos 7583  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-oadd 7796  df-er 7975  df-map 8090  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-fsupp 8511  df-oi 8650  df-card 9044  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-nn 11302  df-2 11360  df-3 11361  df-n0 11556  df-z 11640  df-uz 11901  df-fz 12546  df-fzo 12686  df-seq 13021  df-hash 13334  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-0g 16303  df-gsum 16304  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-mulg 17742  df-ghm 17856  df-cntz 17947  df-cmn 18392  df-abl 18393  df-mgp 18688  df-ur 18700  df-ring 18747  df-oppr 18821  df-dvdsr 18839  df-unit 18840  df-invr 18870  df-drng 18949  df-lmod 19065  df-lvec 19306  df-nzr 19463  df-linc 42757  df-lininds 42793  df-lindeps 42795
This theorem is referenced by:  ldepslinc  42860
  Copyright terms: Public domain W3C validator