Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincext1 Structured version   Visualization version   GIF version

Theorem lincext1 46655
Description: Property 1 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lincext.b 𝐵 = (Base‘𝑀)
lincext.r 𝑅 = (Scalar‘𝑀)
lincext.e 𝐸 = (Base‘𝑅)
lincext.0 0 = (0g𝑅)
lincext.z 𝑍 = (0g𝑀)
lincext.n 𝑁 = (invg𝑅)
lincext.f 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
Assertion
Ref Expression
lincext1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸m 𝑆))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐸   𝑧,𝐺   𝑧,𝑀   𝑧,𝑆   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   𝑁(𝑧)   0 (𝑧)   𝑍(𝑧)

Proof of Theorem lincext1
StepHypRef Expression
1 lincext.f . 2 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
2 lincext.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
3 eqid 2731 . . . . . . . . . 10 (Scalar‘𝑀) = (Scalar‘𝑀)
43lmodfgrp 20387 . . . . . . . . 9 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Grp)
54ad2antrr 724 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (Scalar‘𝑀) ∈ Grp)
62, 5eqeltrid 2836 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝑅 ∈ Grp)
7 simpr1 1194 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝑌𝐸)
8 lincext.e . . . . . . . 8 𝐸 = (Base‘𝑅)
9 lincext.n . . . . . . . 8 𝑁 = (invg𝑅)
108, 9grpinvcl 18812 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑌𝐸) → (𝑁𝑌) ∈ 𝐸)
116, 7, 10syl2anc 584 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑁𝑌) ∈ 𝐸)
1211ad2antrr 724 . . . . 5 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) ∧ 𝑧 = 𝑋) → (𝑁𝑌) ∈ 𝐸)
13 elmapi 8794 . . . . . . . . 9 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
14 df-ne 2940 . . . . . . . . . . . . . 14 (𝑧𝑋 ↔ ¬ 𝑧 = 𝑋)
1514biimpri 227 . . . . . . . . . . . . 13 𝑧 = 𝑋𝑧𝑋)
1615anim2i 617 . . . . . . . . . . . 12 ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝑧𝑆𝑧𝑋))
17 eldifsn 4752 . . . . . . . . . . . 12 (𝑧 ∈ (𝑆 ∖ {𝑋}) ↔ (𝑧𝑆𝑧𝑋))
1816, 17sylibr 233 . . . . . . . . . . 11 ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → 𝑧 ∈ (𝑆 ∖ {𝑋}))
19 ffvelcdm 7037 . . . . . . . . . . 11 ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑧) ∈ 𝐸)
2018, 19sylan2 593 . . . . . . . . . 10 ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸 ∧ (𝑧𝑆 ∧ ¬ 𝑧 = 𝑋)) → (𝐺𝑧) ∈ 𝐸)
2120ex 413 . . . . . . . . 9 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2213, 21syl 17 . . . . . . . 8 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
23223ad2ant3 1135 . . . . . . 7 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2423adantl 482 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2524impl 456 . . . . 5 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸)
2612, 25ifclda 4526 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) → if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)) ∈ 𝐸)
2726fmpttd 7068 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸)
28 simpr 485 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵)
298fvexi 6861 . . . . . 6 𝐸 ∈ V
3028, 29jctil 520 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
3130adantr 481 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
32 elmapg 8785 . . . 4 ((𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵) → ((𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸m 𝑆) ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸))
3331, 32syl 17 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸m 𝑆) ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸))
3427, 33mpbird 256 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸m 𝑆))
351, 34eqeltrid 2836 1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸m 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  Vcvv 3446  cdif 3910  ifcif 4491  𝒫 cpw 4565  {csn 4591  cmpt 5193  wf 6497  cfv 6501  (class class class)co 7362  m cmap 8772  Basecbs 17094  Scalarcsca 17150  0gc0g 17335  Grpcgrp 18762  invgcminusg 18763  LModclmod 20378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-map 8774  df-0g 17337  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-grp 18765  df-minusg 18766  df-ring 19980  df-lmod 20380
This theorem is referenced by:  lincext2  46656  lincext3  46657  lindslinindsimp1  46658  islindeps2  46684
  Copyright terms: Public domain W3C validator