Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincext1 Structured version   Visualization version   GIF version

Theorem lincext1 45795
Description: Property 1 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lincext.b 𝐵 = (Base‘𝑀)
lincext.r 𝑅 = (Scalar‘𝑀)
lincext.e 𝐸 = (Base‘𝑅)
lincext.0 0 = (0g𝑅)
lincext.z 𝑍 = (0g𝑀)
lincext.n 𝑁 = (invg𝑅)
lincext.f 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
Assertion
Ref Expression
lincext1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸m 𝑆))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐸   𝑧,𝐺   𝑧,𝑀   𝑧,𝑆   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   𝑁(𝑧)   0 (𝑧)   𝑍(𝑧)

Proof of Theorem lincext1
StepHypRef Expression
1 lincext.f . 2 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
2 lincext.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
3 eqid 2738 . . . . . . . . . 10 (Scalar‘𝑀) = (Scalar‘𝑀)
43lmodfgrp 20132 . . . . . . . . 9 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Grp)
54ad2antrr 723 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (Scalar‘𝑀) ∈ Grp)
62, 5eqeltrid 2843 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝑅 ∈ Grp)
7 simpr1 1193 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝑌𝐸)
8 lincext.e . . . . . . . 8 𝐸 = (Base‘𝑅)
9 lincext.n . . . . . . . 8 𝑁 = (invg𝑅)
108, 9grpinvcl 18627 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑌𝐸) → (𝑁𝑌) ∈ 𝐸)
116, 7, 10syl2anc 584 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑁𝑌) ∈ 𝐸)
1211ad2antrr 723 . . . . 5 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) ∧ 𝑧 = 𝑋) → (𝑁𝑌) ∈ 𝐸)
13 elmapi 8637 . . . . . . . . 9 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
14 df-ne 2944 . . . . . . . . . . . . . 14 (𝑧𝑋 ↔ ¬ 𝑧 = 𝑋)
1514biimpri 227 . . . . . . . . . . . . 13 𝑧 = 𝑋𝑧𝑋)
1615anim2i 617 . . . . . . . . . . . 12 ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝑧𝑆𝑧𝑋))
17 eldifsn 4720 . . . . . . . . . . . 12 (𝑧 ∈ (𝑆 ∖ {𝑋}) ↔ (𝑧𝑆𝑧𝑋))
1816, 17sylibr 233 . . . . . . . . . . 11 ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → 𝑧 ∈ (𝑆 ∖ {𝑋}))
19 ffvelrn 6959 . . . . . . . . . . 11 ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑧) ∈ 𝐸)
2018, 19sylan2 593 . . . . . . . . . 10 ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸 ∧ (𝑧𝑆 ∧ ¬ 𝑧 = 𝑋)) → (𝐺𝑧) ∈ 𝐸)
2120ex 413 . . . . . . . . 9 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2213, 21syl 17 . . . . . . . 8 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
23223ad2ant3 1134 . . . . . . 7 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2423adantl 482 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2524impl 456 . . . . 5 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸)
2612, 25ifclda 4494 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) → if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)) ∈ 𝐸)
2726fmpttd 6989 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸)
28 simpr 485 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵)
298fvexi 6788 . . . . . 6 𝐸 ∈ V
3028, 29jctil 520 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
3130adantr 481 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
32 elmapg 8628 . . . 4 ((𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵) → ((𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸m 𝑆) ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸))
3331, 32syl 17 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸m 𝑆) ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸))
3427, 33mpbird 256 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸m 𝑆))
351, 34eqeltrid 2843 1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸m 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  ifcif 4459  𝒫 cpw 4533  {csn 4561  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Basecbs 16912  Scalarcsca 16965  0gc0g 17150  Grpcgrp 18577  invgcminusg 18578  LModclmod 20123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-ring 19785  df-lmod 20125
This theorem is referenced by:  lincext2  45796  lincext3  45797  lindslinindsimp1  45798  islindeps2  45824
  Copyright terms: Public domain W3C validator