Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincext1 Structured version   Visualization version   GIF version

Theorem lincext1 42761
Description: Property 1 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lincext.b 𝐵 = (Base‘𝑀)
lincext.r 𝑅 = (Scalar‘𝑀)
lincext.e 𝐸 = (Base‘𝑅)
lincext.0 0 = (0g𝑅)
lincext.z 𝑍 = (0g𝑀)
lincext.n 𝑁 = (invg𝑅)
lincext.f 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
Assertion
Ref Expression
lincext1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸𝑚 𝑆))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐸   𝑧,𝐺   𝑧,𝑀   𝑧,𝑆   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   𝑁(𝑧)   0 (𝑧)   𝑍(𝑧)

Proof of Theorem lincext1
StepHypRef Expression
1 lincext.f . 2 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
2 lincext.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
3 eqid 2770 . . . . . . . . . 10 (Scalar‘𝑀) = (Scalar‘𝑀)
43lmodfgrp 19081 . . . . . . . . 9 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Grp)
54ad2antrr 697 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → (Scalar‘𝑀) ∈ Grp)
62, 5syl5eqel 2853 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → 𝑅 ∈ Grp)
7 simpr1 1232 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → 𝑌𝐸)
8 lincext.e . . . . . . . 8 𝐸 = (Base‘𝑅)
9 lincext.n . . . . . . . 8 𝑁 = (invg𝑅)
108, 9grpinvcl 17674 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑌𝐸) → (𝑁𝑌) ∈ 𝐸)
116, 7, 10syl2anc 565 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → (𝑁𝑌) ∈ 𝐸)
1211ad2antrr 697 . . . . 5 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) ∧ 𝑧 = 𝑋) → (𝑁𝑌) ∈ 𝐸)
13 elmapi 8030 . . . . . . . . 9 (𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
14 df-ne 2943 . . . . . . . . . . . . . 14 (𝑧𝑋 ↔ ¬ 𝑧 = 𝑋)
1514biimpri 218 . . . . . . . . . . . . 13 𝑧 = 𝑋𝑧𝑋)
1615anim2i 595 . . . . . . . . . . . 12 ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝑧𝑆𝑧𝑋))
17 eldifsn 4451 . . . . . . . . . . . 12 (𝑧 ∈ (𝑆 ∖ {𝑋}) ↔ (𝑧𝑆𝑧𝑋))
1816, 17sylibr 224 . . . . . . . . . . 11 ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → 𝑧 ∈ (𝑆 ∖ {𝑋}))
19 ffvelrn 6500 . . . . . . . . . . 11 ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑧) ∈ 𝐸)
2018, 19sylan2 572 . . . . . . . . . 10 ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸 ∧ (𝑧𝑆 ∧ ¬ 𝑧 = 𝑋)) → (𝐺𝑧) ∈ 𝐸)
2120ex 397 . . . . . . . . 9 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2213, 21syl 17 . . . . . . . 8 (𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
23223ad2ant3 1128 . . . . . . 7 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2423adantl 467 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2524impl 443 . . . . 5 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸)
2612, 25ifclda 4257 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) → if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)) ∈ 𝐸)
27 eqid 2770 . . . 4 (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
2826, 27fmptd 6527 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸)
29 simpr 471 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵)
30 fvex 6342 . . . . . . 7 (Base‘𝑅) ∈ V
318, 30eqeltri 2845 . . . . . 6 𝐸 ∈ V
3229, 31jctil 503 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
3332adantr 466 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → (𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
34 elmapg 8021 . . . 4 ((𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵) → ((𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸𝑚 𝑆) ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸))
3533, 34syl 17 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸𝑚 𝑆) ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸))
3628, 35mpbird 247 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸𝑚 𝑆))
371, 36syl5eqel 2853 1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸𝑚 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942  Vcvv 3349  cdif 3718  ifcif 4223  𝒫 cpw 4295  {csn 4314  cmpt 4861  wf 6027  cfv 6031  (class class class)co 6792  𝑚 cmap 8008  Basecbs 16063  Scalarcsca 16151  0gc0g 16307  Grpcgrp 17629  invgcminusg 17630  LModclmod 19072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-map 8010  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-ring 18756  df-lmod 19074
This theorem is referenced by:  lincext2  42762  lincext3  42763  lindslinindsimp1  42764  islindeps2  42790
  Copyright terms: Public domain W3C validator