Proof of Theorem lincext1
| Step | Hyp | Ref
| Expression |
| 1 | | lincext.f |
. 2
⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) |
| 2 | | lincext.r |
. . . . . . . 8
⊢ 𝑅 = (Scalar‘𝑀) |
| 3 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
| 4 | 3 | lmodfgrp 20831 |
. . . . . . . . 9
⊢ (𝑀 ∈ LMod →
(Scalar‘𝑀) ∈
Grp) |
| 5 | 4 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → (Scalar‘𝑀) ∈ Grp) |
| 6 | 2, 5 | eqeltrid 2839 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → 𝑅 ∈ Grp) |
| 7 | | simpr1 1195 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → 𝑌 ∈ 𝐸) |
| 8 | | lincext.e |
. . . . . . . 8
⊢ 𝐸 = (Base‘𝑅) |
| 9 | | lincext.n |
. . . . . . . 8
⊢ 𝑁 = (invg‘𝑅) |
| 10 | 8, 9 | grpinvcl 18975 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐸) → (𝑁‘𝑌) ∈ 𝐸) |
| 11 | 6, 7, 10 | syl2anc 584 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → (𝑁‘𝑌) ∈ 𝐸) |
| 12 | 11 | ad2antrr 726 |
. . . . 5
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑧 = 𝑋) → (𝑁‘𝑌) ∈ 𝐸) |
| 13 | | elmapi 8868 |
. . . . . . . . 9
⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸) |
| 14 | | df-ne 2934 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ≠ 𝑋 ↔ ¬ 𝑧 = 𝑋) |
| 15 | 14 | biimpri 228 |
. . . . . . . . . . . . 13
⊢ (¬
𝑧 = 𝑋 → 𝑧 ≠ 𝑋) |
| 16 | 15 | anim2i 617 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝑧 ∈ 𝑆 ∧ 𝑧 ≠ 𝑋)) |
| 17 | | eldifsn 4767 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑆 ∖ {𝑋}) ↔ (𝑧 ∈ 𝑆 ∧ 𝑧 ≠ 𝑋)) |
| 18 | 16, 17 | sylibr 234 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑆 ∧ ¬ 𝑧 = 𝑋) → 𝑧 ∈ (𝑆 ∖ {𝑋})) |
| 19 | | ffvelcdm 7076 |
. . . . . . . . . . 11
⊢ ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺‘𝑧) ∈ 𝐸) |
| 20 | 18, 19 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸 ∧ (𝑧 ∈ 𝑆 ∧ ¬ 𝑧 = 𝑋)) → (𝐺‘𝑧) ∈ 𝐸) |
| 21 | 20 | ex 412 |
. . . . . . . . 9
⊢ (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → ((𝑧 ∈ 𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺‘𝑧) ∈ 𝐸)) |
| 22 | 13, 21 | syl 17 |
. . . . . . . 8
⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → ((𝑧 ∈ 𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺‘𝑧) ∈ 𝐸)) |
| 23 | 22 | 3ad2ant3 1135 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) → ((𝑧 ∈ 𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺‘𝑧) ∈ 𝐸)) |
| 24 | 23 | adantl 481 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → ((𝑧 ∈ 𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺‘𝑧) ∈ 𝐸)) |
| 25 | 24 | impl 455 |
. . . . 5
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) ∧ 𝑧 ∈ 𝑆) ∧ ¬ 𝑧 = 𝑋) → (𝐺‘𝑧) ∈ 𝐸) |
| 26 | 12, 25 | ifclda 4541 |
. . . 4
⊢ ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) ∧ 𝑧 ∈ 𝑆) → if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧)) ∈ 𝐸) |
| 27 | 26 | fmpttd 7110 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))):𝑆⟶𝐸) |
| 28 | | simpr 484 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
| 29 | 8 | fvexi 6895 |
. . . . . 6
⊢ 𝐸 ∈ V |
| 30 | 28, 29 | jctil 519 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵)) |
| 31 | 30 | adantr 480 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → (𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵)) |
| 32 | | elmapg 8858 |
. . . 4
⊢ ((𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ∈ (𝐸 ↑m 𝑆) ↔ (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))):𝑆⟶𝐸)) |
| 33 | 31, 32 | syl 17 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ∈ (𝐸 ↑m 𝑆) ↔ (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))):𝑆⟶𝐸)) |
| 34 | 27, 33 | mpbird 257 |
. 2
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ∈ (𝐸 ↑m 𝑆)) |
| 35 | 1, 34 | eqeltrid 2839 |
1
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸 ↑m 𝑆)) |