Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincext1 Structured version   Visualization version   GIF version

Theorem lincext1 44863
Description: Property 1 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lincext.b 𝐵 = (Base‘𝑀)
lincext.r 𝑅 = (Scalar‘𝑀)
lincext.e 𝐸 = (Base‘𝑅)
lincext.0 0 = (0g𝑅)
lincext.z 𝑍 = (0g𝑀)
lincext.n 𝑁 = (invg𝑅)
lincext.f 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
Assertion
Ref Expression
lincext1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸m 𝑆))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐸   𝑧,𝐺   𝑧,𝑀   𝑧,𝑆   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   𝑁(𝑧)   0 (𝑧)   𝑍(𝑧)

Proof of Theorem lincext1
StepHypRef Expression
1 lincext.f . 2 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
2 lincext.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
3 eqid 2798 . . . . . . . . . 10 (Scalar‘𝑀) = (Scalar‘𝑀)
43lmodfgrp 19636 . . . . . . . . 9 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Grp)
54ad2antrr 725 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (Scalar‘𝑀) ∈ Grp)
62, 5eqeltrid 2894 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝑅 ∈ Grp)
7 simpr1 1191 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝑌𝐸)
8 lincext.e . . . . . . . 8 𝐸 = (Base‘𝑅)
9 lincext.n . . . . . . . 8 𝑁 = (invg𝑅)
108, 9grpinvcl 18143 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑌𝐸) → (𝑁𝑌) ∈ 𝐸)
116, 7, 10syl2anc 587 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑁𝑌) ∈ 𝐸)
1211ad2antrr 725 . . . . 5 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) ∧ 𝑧 = 𝑋) → (𝑁𝑌) ∈ 𝐸)
13 elmapi 8411 . . . . . . . . 9 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
14 df-ne 2988 . . . . . . . . . . . . . 14 (𝑧𝑋 ↔ ¬ 𝑧 = 𝑋)
1514biimpri 231 . . . . . . . . . . . . 13 𝑧 = 𝑋𝑧𝑋)
1615anim2i 619 . . . . . . . . . . . 12 ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝑧𝑆𝑧𝑋))
17 eldifsn 4680 . . . . . . . . . . . 12 (𝑧 ∈ (𝑆 ∖ {𝑋}) ↔ (𝑧𝑆𝑧𝑋))
1816, 17sylibr 237 . . . . . . . . . . 11 ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → 𝑧 ∈ (𝑆 ∖ {𝑋}))
19 ffvelrn 6826 . . . . . . . . . . 11 ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑧) ∈ 𝐸)
2018, 19sylan2 595 . . . . . . . . . 10 ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸 ∧ (𝑧𝑆 ∧ ¬ 𝑧 = 𝑋)) → (𝐺𝑧) ∈ 𝐸)
2120ex 416 . . . . . . . . 9 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2213, 21syl 17 . . . . . . . 8 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
23223ad2ant3 1132 . . . . . . 7 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2423adantl 485 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝑧𝑆 ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸))
2524impl 459 . . . . 5 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) ∧ ¬ 𝑧 = 𝑋) → (𝐺𝑧) ∈ 𝐸)
2612, 25ifclda 4459 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) ∧ 𝑧𝑆) → if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)) ∈ 𝐸)
2726fmpttd 6856 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸)
28 simpr 488 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵)
298fvexi 6659 . . . . . 6 𝐸 ∈ V
3028, 29jctil 523 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
3130adantr 484 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
32 elmapg 8402 . . . 4 ((𝐸 ∈ V ∧ 𝑆 ∈ 𝒫 𝐵) → ((𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸m 𝑆) ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸))
3331, 32syl 17 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸m 𝑆) ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))):𝑆𝐸))
3427, 33mpbird 260 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧))) ∈ (𝐸m 𝑆))
351, 34eqeltrid 2894 1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸m 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  cdif 3878  ifcif 4425  𝒫 cpw 4497  {csn 4525  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  Basecbs 16475  Scalarcsca 16560  0gc0g 16705  Grpcgrp 18095  invgcminusg 18096  LModclmod 19627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-ring 19292  df-lmod 19629
This theorem is referenced by:  lincext2  44864  lincext3  44865  lindslinindsimp1  44866  islindeps2  44892
  Copyright terms: Public domain W3C validator