Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzldep Structured version   Visualization version   GIF version

Theorem zlmodzxzldep 44972
 Description: { A , B } is a linearly dependent set within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
zlmodzxzldep {𝐴, 𝐵} linDepS 𝑍

Proof of Theorem zlmodzxzldep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zlmodzxzldep.z . . . 4 𝑍 = (ℤring freeLMod {0, 1})
2 zlmodzxzldep.a . . . 4 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
3 zlmodzxzldep.b . . . 4 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
4 eqid 2798 . . . 4 {⟨𝐴, 2⟩, ⟨𝐵, -3⟩} = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
51, 2, 3, 4zlmodzxzldeplem1 44968 . . 3 {⟨𝐴, 2⟩, ⟨𝐵, -3⟩} ∈ (ℤ ↑m {𝐴, 𝐵})
61, 2, 3, 4zlmodzxzldeplem2 44969 . . . 4 {⟨𝐴, 2⟩, ⟨𝐵, -3⟩} finSupp 0
71, 2, 3, 4zlmodzxzldeplem3 44970 . . . 4 ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩} ( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍)
81, 2, 3, 4zlmodzxzldeplem4 44971 . . . 4 𝑦 ∈ {𝐴, 𝐵} ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝑦) ≠ 0
96, 7, 83pm3.2i 1336 . . 3 ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩} finSupp 0 ∧ ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩} ( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍) ∧ ∃𝑦 ∈ {𝐴, 𝐵} ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝑦) ≠ 0)
10 breq1 5034 . . . . 5 (𝑥 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩} → (𝑥 finSupp 0 ↔ {⟨𝐴, 2⟩, ⟨𝐵, -3⟩} finSupp 0))
11 oveq1 7147 . . . . . 6 (𝑥 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩} → (𝑥( linC ‘𝑍){𝐴, 𝐵}) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩} ( linC ‘𝑍){𝐴, 𝐵}))
1211eqeq1d 2800 . . . . 5 (𝑥 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩} → ((𝑥( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍) ↔ ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩} ( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍)))
13 fveq1 6649 . . . . . . 7 (𝑥 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩} → (𝑥𝑦) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝑦))
1413neeq1d 3046 . . . . . 6 (𝑥 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩} → ((𝑥𝑦) ≠ 0 ↔ ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝑦) ≠ 0))
1514rexbidv 3256 . . . . 5 (𝑥 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩} → (∃𝑦 ∈ {𝐴, 𝐵} (𝑥𝑦) ≠ 0 ↔ ∃𝑦 ∈ {𝐴, 𝐵} ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝑦) ≠ 0))
1610, 12, 153anbi123d 1433 . . . 4 (𝑥 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩} → ((𝑥 finSupp 0 ∧ (𝑥( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍) ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝑥𝑦) ≠ 0) ↔ ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩} finSupp 0 ∧ ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩} ( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍) ∧ ∃𝑦 ∈ {𝐴, 𝐵} ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝑦) ≠ 0)))
1716rspcev 3571 . . 3 (({⟨𝐴, 2⟩, ⟨𝐵, -3⟩} ∈ (ℤ ↑m {𝐴, 𝐵}) ∧ ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩} finSupp 0 ∧ ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩} ( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍) ∧ ∃𝑦 ∈ {𝐴, 𝐵} ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝑦) ≠ 0)) → ∃𝑥 ∈ (ℤ ↑m {𝐴, 𝐵})(𝑥 finSupp 0 ∧ (𝑥( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍) ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝑥𝑦) ≠ 0))
185, 9, 17mp2an 691 . 2 𝑥 ∈ (ℤ ↑m {𝐴, 𝐵})(𝑥 finSupp 0 ∧ (𝑥( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍) ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝑥𝑦) ≠ 0)
19 ovex 7173 . . . 4 (ℤring freeLMod {0, 1}) ∈ V
201, 19eqeltri 2886 . . 3 𝑍 ∈ V
21 3z 12010 . . . . . 6 3 ∈ ℤ
22 6nn 11721 . . . . . . 7 6 ∈ ℕ
2322nnzi 12001 . . . . . 6 6 ∈ ℤ
241zlmodzxzel 44818 . . . . . 6 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
2521, 23, 24mp2an 691 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍)
262, 25eqeltri 2886 . . . 4 𝐴 ∈ (Base‘𝑍)
27 2z 12009 . . . . . 6 2 ∈ ℤ
28 4z 12011 . . . . . 6 4 ∈ ℤ
291zlmodzxzel 44818 . . . . . 6 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
3027, 28, 29mp2an 691 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)
313, 30eqeltri 2886 . . . 4 𝐵 ∈ (Base‘𝑍)
32 prelpwi 5306 . . . 4 ((𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍)) → {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍))
3326, 31, 32mp2an 691 . . 3 {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍)
34 eqid 2798 . . . 4 (Base‘𝑍) = (Base‘𝑍)
35 eqid 2798 . . . 4 (0g𝑍) = (0g𝑍)
361zlmodzxzlmod 44817 . . . . 5 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
3736simpri 489 . . . 4 ring = (Scalar‘𝑍)
38 zringbas 20177 . . . 4 ℤ = (Base‘ℤring)
39 zring0 20181 . . . 4 0 = (0g‘ℤring)
4034, 35, 37, 38, 39islindeps 44921 . . 3 ((𝑍 ∈ V ∧ {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍)) → ({𝐴, 𝐵} linDepS 𝑍 ↔ ∃𝑥 ∈ (ℤ ↑m {𝐴, 𝐵})(𝑥 finSupp 0 ∧ (𝑥( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍) ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝑥𝑦) ≠ 0)))
4120, 33, 40mp2an 691 . 2 ({𝐴, 𝐵} linDepS 𝑍 ↔ ∃𝑥 ∈ (ℤ ↑m {𝐴, 𝐵})(𝑥 finSupp 0 ∧ (𝑥( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍) ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝑥𝑦) ≠ 0))
4218, 41mpbir 234 1 {𝐴, 𝐵} linDepS 𝑍
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∃wrex 3107  Vcvv 3441  𝒫 cpw 4497  {cpr 4527  ⟨cop 4531   class class class wbr 5031  ‘cfv 6327  (class class class)co 7140   ↑m cmap 8396   finSupp cfsupp 8824  0cc0 10533  1c1 10534  -cneg 10867  2c2 11687  3c3 11688  4c4 11689  6c6 11691  ℤcz 11976  Basecbs 16482  Scalarcsca 16567  0gc0g 16712  LModclmod 19635  ℤringzring 20171   freeLMod cfrlm 20444   linC clinc 44872   linDepS clindeps 44909 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610  ax-addf 10612  ax-mulf 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-isom 6336  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7395  df-om 7568  df-1st 7678  df-2nd 7679  df-supp 7821  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-ixp 8452  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-fsupp 8825  df-sup 8897  df-oi 8965  df-card 9359  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-z 11977  df-dec 12094  df-uz 12239  df-fz 12893  df-fzo 13036  df-seq 13372  df-hash 13694  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-0g 16714  df-gsum 16715  df-prds 16720  df-pws 16722  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18225  df-subg 18276  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19241  df-ur 19253  df-ring 19300  df-cring 19301  df-subrg 19534  df-lmod 19637  df-lss 19705  df-sra 19945  df-rgmod 19946  df-cnfld 20100  df-zring 20172  df-dsmm 20430  df-frlm 20445  df-linc 44874  df-lininds 44910  df-lindeps 44912 This theorem is referenced by:  ldepsnlinc  44976
 Copyright terms: Public domain W3C validator