| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngamnd | Structured version Visualization version GIF version | ||
| Description: R is an (additive) monoid. (Contributed by AV, 11-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| 2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
| Ref | Expression |
|---|---|
| 2zrngamnd | ⊢ 𝑅 ∈ Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
| 2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
| 3 | 1, 2 | 2zrngasgrp 48227 | . 2 ⊢ 𝑅 ∈ Smgrp |
| 4 | 1 | 0even 48218 | . . 3 ⊢ 0 ∈ 𝐸 |
| 5 | id 22 | . . . 4 ⊢ (0 ∈ 𝐸 → 0 ∈ 𝐸) | |
| 6 | oveq1 7376 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 + 𝑦) = (0 + 𝑦)) | |
| 7 | 6 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ (0 + 𝑦) = 𝑦)) |
| 8 | 7 | ovanraleqv 7393 | . . . . 5 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((0 ∈ 𝐸 ∧ 𝑥 = 0) → (∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))) |
| 10 | elrabi 3651 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ) | |
| 11 | 10, 1 | eleq2s 2846 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℤ) |
| 12 | 11 | zcnd 12615 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ) |
| 13 | addlid 11333 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ → (0 + 𝑦) = 𝑦) | |
| 14 | addrid 11330 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ → (𝑦 + 0) = 𝑦) | |
| 15 | 13, 14 | jca 511 | . . . . . . 7 ⊢ (𝑦 ∈ ℂ → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
| 16 | 12, 15 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ 𝐸 → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((0 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
| 18 | 17 | ralrimiva 3125 | . . . 4 ⊢ (0 ∈ 𝐸 → ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
| 19 | 5, 9, 18 | rspcedvd 3587 | . . 3 ⊢ (0 ∈ 𝐸 → ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) |
| 20 | 4, 19 | ax-mp 5 | . 2 ⊢ ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) |
| 21 | 1, 2 | 2zrngbas 48223 | . . 3 ⊢ 𝐸 = (Base‘𝑅) |
| 22 | 1, 2 | 2zrngadd 48224 | . . 3 ⊢ + = (+g‘𝑅) |
| 23 | 21, 22 | ismnddef 18645 | . 2 ⊢ (𝑅 ∈ Mnd ↔ (𝑅 ∈ Smgrp ∧ ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) |
| 24 | 3, 20, 23 | mpbir2an 711 | 1 ⊢ 𝑅 ∈ Mnd |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3402 (class class class)co 7369 ℂcc 11042 0cc0 11044 + caddc 11047 · cmul 11049 2c2 12217 ℤcz 12505 ↾s cress 17176 Smgrpcsgrp 18627 Mndcmnd 18643 ℂfldccnfld 21296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-cnfld 21297 |
| This theorem is referenced by: 2zrngacmnd 48229 2zrngagrp 48230 |
| Copyright terms: Public domain | W3C validator |