Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngamnd | Structured version Visualization version GIF version |
Description: R is an (additive) monoid. (Contributed by AV, 11-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
Ref | Expression |
---|---|
2zrngamnd | ⊢ 𝑅 ∈ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
3 | 1, 2 | 2zrngasgrp 45386 | . 2 ⊢ 𝑅 ∈ Smgrp |
4 | 1 | 0even 45377 | . . 3 ⊢ 0 ∈ 𝐸 |
5 | id 22 | . . . 4 ⊢ (0 ∈ 𝐸 → 0 ∈ 𝐸) | |
6 | oveq1 7262 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 + 𝑦) = (0 + 𝑦)) | |
7 | 6 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ (0 + 𝑦) = 𝑦)) |
8 | 7 | ovanraleqv 7279 | . . . . 5 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))) |
9 | 8 | adantl 481 | . . . 4 ⊢ ((0 ∈ 𝐸 ∧ 𝑥 = 0) → (∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))) |
10 | elrabi 3611 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ) | |
11 | 10, 1 | eleq2s 2857 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℤ) |
12 | 11 | zcnd 12356 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ) |
13 | addid2 11088 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ → (0 + 𝑦) = 𝑦) | |
14 | addid1 11085 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ → (𝑦 + 0) = 𝑦) | |
15 | 13, 14 | jca 511 | . . . . . . 7 ⊢ (𝑦 ∈ ℂ → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
16 | 12, 15 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ 𝐸 → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
17 | 16 | adantl 481 | . . . . 5 ⊢ ((0 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
18 | 17 | ralrimiva 3107 | . . . 4 ⊢ (0 ∈ 𝐸 → ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
19 | 5, 9, 18 | rspcedvd 3555 | . . 3 ⊢ (0 ∈ 𝐸 → ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) |
20 | 4, 19 | ax-mp 5 | . 2 ⊢ ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) |
21 | 1, 2 | 2zrngbas 45382 | . . 3 ⊢ 𝐸 = (Base‘𝑅) |
22 | 1, 2 | 2zrngadd 45383 | . . 3 ⊢ + = (+g‘𝑅) |
23 | 21, 22 | ismnddef 18302 | . 2 ⊢ (𝑅 ∈ Mnd ↔ (𝑅 ∈ Smgrp ∧ ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) |
24 | 3, 20, 23 | mpbir2an 707 | 1 ⊢ 𝑅 ∈ Mnd |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 (class class class)co 7255 ℂcc 10800 0cc0 10802 + caddc 10805 · cmul 10807 2c2 11958 ℤcz 12249 ↾s cress 16867 Smgrpcsgrp 18289 Mndcmnd 18300 ℂfldccnfld 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-cnfld 20511 |
This theorem is referenced by: 2zrngacmnd 45388 2zrngagrp 45389 |
Copyright terms: Public domain | W3C validator |