|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngamnd | Structured version Visualization version GIF version | ||
| Description: R is an (additive) monoid. (Contributed by AV, 11-Feb-2020.) | 
| Ref | Expression | 
|---|---|
| 2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | 
| 2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) | 
| Ref | Expression | 
|---|---|
| 2zrngamnd | ⊢ 𝑅 ∈ Mnd | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
| 2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
| 3 | 1, 2 | 2zrngasgrp 48167 | . 2 ⊢ 𝑅 ∈ Smgrp | 
| 4 | 1 | 0even 48158 | . . 3 ⊢ 0 ∈ 𝐸 | 
| 5 | id 22 | . . . 4 ⊢ (0 ∈ 𝐸 → 0 ∈ 𝐸) | |
| 6 | oveq1 7439 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 + 𝑦) = (0 + 𝑦)) | |
| 7 | 6 | eqeq1d 2738 | . . . . . 6 ⊢ (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ (0 + 𝑦) = 𝑦)) | 
| 8 | 7 | ovanraleqv 7456 | . . . . 5 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))) | 
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((0 ∈ 𝐸 ∧ 𝑥 = 0) → (∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))) | 
| 10 | elrabi 3686 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ) | |
| 11 | 10, 1 | eleq2s 2858 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℤ) | 
| 12 | 11 | zcnd 12725 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ) | 
| 13 | addlid 11445 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ → (0 + 𝑦) = 𝑦) | |
| 14 | addrid 11442 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ → (𝑦 + 0) = 𝑦) | |
| 15 | 13, 14 | jca 511 | . . . . . . 7 ⊢ (𝑦 ∈ ℂ → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) | 
| 16 | 12, 15 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ 𝐸 → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) | 
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((0 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) | 
| 18 | 17 | ralrimiva 3145 | . . . 4 ⊢ (0 ∈ 𝐸 → ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) | 
| 19 | 5, 9, 18 | rspcedvd 3623 | . . 3 ⊢ (0 ∈ 𝐸 → ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) | 
| 20 | 4, 19 | ax-mp 5 | . 2 ⊢ ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) | 
| 21 | 1, 2 | 2zrngbas 48163 | . . 3 ⊢ 𝐸 = (Base‘𝑅) | 
| 22 | 1, 2 | 2zrngadd 48164 | . . 3 ⊢ + = (+g‘𝑅) | 
| 23 | 21, 22 | ismnddef 18750 | . 2 ⊢ (𝑅 ∈ Mnd ↔ (𝑅 ∈ Smgrp ∧ ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) | 
| 24 | 3, 20, 23 | mpbir2an 711 | 1 ⊢ 𝑅 ∈ Mnd | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 {crab 3435 (class class class)co 7432 ℂcc 11154 0cc0 11156 + caddc 11159 · cmul 11161 2c2 12322 ℤcz 12615 ↾s cress 17275 Smgrpcsgrp 18732 Mndcmnd 18748 ℂfldccnfld 21365 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-addf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-cnfld 21366 | 
| This theorem is referenced by: 2zrngacmnd 48169 2zrngagrp 48170 | 
| Copyright terms: Public domain | W3C validator |