Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngamnd Structured version   Visualization version   GIF version

Theorem 2zrngamnd 43610
Description: R is an (additive) monoid. (Contributed by AV, 11-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngamnd 𝑅 ∈ Mnd
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧

Proof of Theorem 2zrngamnd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 2zrngbas.r . . 3 𝑅 = (ℂflds 𝐸)
31, 22zrngasgrp 43609 . 2 𝑅 ∈ SGrp
410even 43600 . . 3 0 ∈ 𝐸
5 id 22 . . . 4 (0 ∈ 𝐸 → 0 ∈ 𝐸)
6 oveq1 6981 . . . . . . 7 (𝑥 = 0 → (𝑥 + 𝑦) = (0 + 𝑦))
76eqeq1d 2773 . . . . . 6 (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ (0 + 𝑦) = 𝑦))
87ovanraleqv 6998 . . . . 5 (𝑥 = 0 → (∀𝑦𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)))
98adantl 474 . . . 4 ((0 ∈ 𝐸𝑥 = 0) → (∀𝑦𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)))
10 elrabi 3583 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ)
1110, 1eleq2s 2877 . . . . . . . 8 (𝑦𝐸𝑦 ∈ ℤ)
1211zcnd 11899 . . . . . . 7 (𝑦𝐸𝑦 ∈ ℂ)
13 addid2 10621 . . . . . . . 8 (𝑦 ∈ ℂ → (0 + 𝑦) = 𝑦)
14 addid1 10618 . . . . . . . 8 (𝑦 ∈ ℂ → (𝑦 + 0) = 𝑦)
1513, 14jca 504 . . . . . . 7 (𝑦 ∈ ℂ → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))
1612, 15syl 17 . . . . . 6 (𝑦𝐸 → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))
1716adantl 474 . . . . 5 ((0 ∈ 𝐸𝑦𝐸) → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))
1817ralrimiva 3125 . . . 4 (0 ∈ 𝐸 → ∀𝑦𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))
195, 9, 18rspcedvd 3535 . . 3 (0 ∈ 𝐸 → ∃𝑥𝐸𝑦𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))
204, 19ax-mp 5 . 2 𝑥𝐸𝑦𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)
211, 22zrngbas 43605 . . 3 𝐸 = (Base‘𝑅)
221, 22zrngadd 43606 . . 3 + = (+g𝑅)
2321, 22ismnddef 17776 . 2 (𝑅 ∈ Mnd ↔ (𝑅 ∈ SGrp ∧ ∃𝑥𝐸𝑦𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)))
243, 20, 23mpbir2an 699 1 𝑅 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387   = wceq 1508  wcel 2051  wral 3081  wrex 3082  {crab 3085  (class class class)co 6974  cc 10331  0cc0 10333   + caddc 10336   · cmul 10338  2c2 11493  cz 11791  s cress 16338  SGrpcsgrp 17763  Mndcmnd 17774  fldccnfld 20262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-addf 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-7 11506  df-8 11507  df-9 11508  df-n0 11706  df-z 11792  df-dec 11910  df-uz 12057  df-fz 12707  df-struct 16339  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-plusg 16432  df-mulr 16433  df-starv 16434  df-tset 16438  df-ple 16439  df-ds 16441  df-unif 16442  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-cnfld 20263
This theorem is referenced by:  2zrngacmnd  43611  2zrngagrp  43612
  Copyright terms: Public domain W3C validator