![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngamnd | Structured version Visualization version GIF version |
Description: R is an (additive) monoid. (Contributed by AV, 11-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
Ref | Expression |
---|---|
2zrngamnd | ⊢ 𝑅 ∈ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
3 | 1, 2 | 2zrngasgrp 47499 | . 2 ⊢ 𝑅 ∈ Smgrp |
4 | 1 | 0even 47490 | . . 3 ⊢ 0 ∈ 𝐸 |
5 | id 22 | . . . 4 ⊢ (0 ∈ 𝐸 → 0 ∈ 𝐸) | |
6 | oveq1 7426 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 + 𝑦) = (0 + 𝑦)) | |
7 | 6 | eqeq1d 2727 | . . . . . 6 ⊢ (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ (0 + 𝑦) = 𝑦)) |
8 | 7 | ovanraleqv 7443 | . . . . 5 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))) |
9 | 8 | adantl 480 | . . . 4 ⊢ ((0 ∈ 𝐸 ∧ 𝑥 = 0) → (∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))) |
10 | elrabi 3673 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ) | |
11 | 10, 1 | eleq2s 2843 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℤ) |
12 | 11 | zcnd 12705 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ) |
13 | addlid 11434 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ → (0 + 𝑦) = 𝑦) | |
14 | addrid 11431 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ → (𝑦 + 0) = 𝑦) | |
15 | 13, 14 | jca 510 | . . . . . . 7 ⊢ (𝑦 ∈ ℂ → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
16 | 12, 15 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ 𝐸 → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
17 | 16 | adantl 480 | . . . . 5 ⊢ ((0 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
18 | 17 | ralrimiva 3135 | . . . 4 ⊢ (0 ∈ 𝐸 → ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
19 | 5, 9, 18 | rspcedvd 3608 | . . 3 ⊢ (0 ∈ 𝐸 → ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) |
20 | 4, 19 | ax-mp 5 | . 2 ⊢ ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) |
21 | 1, 2 | 2zrngbas 47495 | . . 3 ⊢ 𝐸 = (Base‘𝑅) |
22 | 1, 2 | 2zrngadd 47496 | . . 3 ⊢ + = (+g‘𝑅) |
23 | 21, 22 | ismnddef 18715 | . 2 ⊢ (𝑅 ∈ Mnd ↔ (𝑅 ∈ Smgrp ∧ ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) |
24 | 3, 20, 23 | mpbir2an 709 | 1 ⊢ 𝑅 ∈ Mnd |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 {crab 3418 (class class class)co 7419 ℂcc 11143 0cc0 11145 + caddc 11148 · cmul 11150 2c2 12305 ℤcz 12596 ↾s cress 17228 Smgrpcsgrp 18697 Mndcmnd 18713 ℂfldccnfld 21313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-addf 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17135 df-sets 17152 df-slot 17170 df-ndx 17182 df-base 17200 df-ress 17229 df-plusg 17265 df-mulr 17266 df-starv 17267 df-tset 17271 df-ple 17272 df-ds 17274 df-unif 17275 df-mgm 18619 df-sgrp 18698 df-mnd 18714 df-cnfld 21314 |
This theorem is referenced by: 2zrngacmnd 47501 2zrngagrp 47502 |
Copyright terms: Public domain | W3C validator |