Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngamnd Structured version   Visualization version   GIF version

Theorem 2zrngamnd 45468
Description: R is an (additive) monoid. (Contributed by AV, 11-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngamnd 𝑅 ∈ Mnd
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧

Proof of Theorem 2zrngamnd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 2zrngbas.r . . 3 𝑅 = (ℂflds 𝐸)
31, 22zrngasgrp 45467 . 2 𝑅 ∈ Smgrp
410even 45458 . . 3 0 ∈ 𝐸
5 id 22 . . . 4 (0 ∈ 𝐸 → 0 ∈ 𝐸)
6 oveq1 7278 . . . . . . 7 (𝑥 = 0 → (𝑥 + 𝑦) = (0 + 𝑦))
76eqeq1d 2742 . . . . . 6 (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ (0 + 𝑦) = 𝑦))
87ovanraleqv 7295 . . . . 5 (𝑥 = 0 → (∀𝑦𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)))
98adantl 482 . . . 4 ((0 ∈ 𝐸𝑥 = 0) → (∀𝑦𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)))
10 elrabi 3620 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ)
1110, 1eleq2s 2859 . . . . . . . 8 (𝑦𝐸𝑦 ∈ ℤ)
1211zcnd 12426 . . . . . . 7 (𝑦𝐸𝑦 ∈ ℂ)
13 addid2 11158 . . . . . . . 8 (𝑦 ∈ ℂ → (0 + 𝑦) = 𝑦)
14 addid1 11155 . . . . . . . 8 (𝑦 ∈ ℂ → (𝑦 + 0) = 𝑦)
1513, 14jca 512 . . . . . . 7 (𝑦 ∈ ℂ → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))
1612, 15syl 17 . . . . . 6 (𝑦𝐸 → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))
1716adantl 482 . . . . 5 ((0 ∈ 𝐸𝑦𝐸) → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))
1817ralrimiva 3110 . . . 4 (0 ∈ 𝐸 → ∀𝑦𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))
195, 9, 18rspcedvd 3564 . . 3 (0 ∈ 𝐸 → ∃𝑥𝐸𝑦𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))
204, 19ax-mp 5 . 2 𝑥𝐸𝑦𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)
211, 22zrngbas 45463 . . 3 𝐸 = (Base‘𝑅)
221, 22zrngadd 45464 . . 3 + = (+g𝑅)
2321, 22ismnddef 18385 . 2 (𝑅 ∈ Mnd ↔ (𝑅 ∈ Smgrp ∧ ∃𝑥𝐸𝑦𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)))
243, 20, 23mpbir2an 708 1 𝑅 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067  {crab 3070  (class class class)co 7271  cc 10870  0cc0 10872   + caddc 10875   · cmul 10877  2c2 12028  cz 12319  s cress 16939  Smgrpcsgrp 18372  Mndcmnd 18383  fldccnfld 20595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-addf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-fz 13239  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-cnfld 20596
This theorem is referenced by:  2zrngacmnd  45469  2zrngagrp  45470
  Copyright terms: Public domain W3C validator