Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngamnd | Structured version Visualization version GIF version |
Description: R is an (additive) monoid. (Contributed by AV, 11-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
Ref | Expression |
---|---|
2zrngamnd | ⊢ 𝑅 ∈ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
3 | 1, 2 | 2zrngasgrp 45467 | . 2 ⊢ 𝑅 ∈ Smgrp |
4 | 1 | 0even 45458 | . . 3 ⊢ 0 ∈ 𝐸 |
5 | id 22 | . . . 4 ⊢ (0 ∈ 𝐸 → 0 ∈ 𝐸) | |
6 | oveq1 7278 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 + 𝑦) = (0 + 𝑦)) | |
7 | 6 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ (0 + 𝑦) = 𝑦)) |
8 | 7 | ovanraleqv 7295 | . . . . 5 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))) |
9 | 8 | adantl 482 | . . . 4 ⊢ ((0 ∈ 𝐸 ∧ 𝑥 = 0) → (∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦))) |
10 | elrabi 3620 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ) | |
11 | 10, 1 | eleq2s 2859 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℤ) |
12 | 11 | zcnd 12426 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ) |
13 | addid2 11158 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ → (0 + 𝑦) = 𝑦) | |
14 | addid1 11155 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ → (𝑦 + 0) = 𝑦) | |
15 | 13, 14 | jca 512 | . . . . . . 7 ⊢ (𝑦 ∈ ℂ → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
16 | 12, 15 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ 𝐸 → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
17 | 16 | adantl 482 | . . . . 5 ⊢ ((0 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
18 | 17 | ralrimiva 3110 | . . . 4 ⊢ (0 ∈ 𝐸 → ∀𝑦 ∈ 𝐸 ((0 + 𝑦) = 𝑦 ∧ (𝑦 + 0) = 𝑦)) |
19 | 5, 9, 18 | rspcedvd 3564 | . . 3 ⊢ (0 ∈ 𝐸 → ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) |
20 | 4, 19 | ax-mp 5 | . 2 ⊢ ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) |
21 | 1, 2 | 2zrngbas 45463 | . . 3 ⊢ 𝐸 = (Base‘𝑅) |
22 | 1, 2 | 2zrngadd 45464 | . . 3 ⊢ + = (+g‘𝑅) |
23 | 21, 22 | ismnddef 18385 | . 2 ⊢ (𝑅 ∈ Mnd ↔ (𝑅 ∈ Smgrp ∧ ∃𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) |
24 | 3, 20, 23 | mpbir2an 708 | 1 ⊢ 𝑅 ∈ Mnd |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∃wrex 3067 {crab 3070 (class class class)co 7271 ℂcc 10870 0cc0 10872 + caddc 10875 · cmul 10877 2c2 12028 ℤcz 12319 ↾s cress 16939 Smgrpcsgrp 18372 Mndcmnd 18383 ℂfldccnfld 20595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-addf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-fz 13239 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-cnfld 20596 |
This theorem is referenced by: 2zrngacmnd 45469 2zrngagrp 45470 |
Copyright terms: Public domain | W3C validator |