MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1mnd Structured version   Visualization version   GIF version

Theorem smndex1mnd 18075
Description: The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a monoid. (Contributed by AV, 16-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1mnd 𝑆 ∈ Mnd
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)

Proof of Theorem smndex1mnd
Dummy variables 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.m . . 3 𝑀 = (EndoFMnd‘ℕ0)
2 smndex1ibas.n . . 3 𝑁 ∈ ℕ
3 smndex1ibas.i . . 3 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
4 smndex1ibas.g . . 3 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
5 smndex1mgm.b . . 3 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
6 smndex1mgm.s . . 3 𝑆 = (𝑀s 𝐵)
71, 2, 3, 4, 5, 6smndex1sgrp 18073 . 2 𝑆 ∈ Smgrp
8 nn0ex 11904 . . . . . . . . 9 0 ∈ V
98mptex 6986 . . . . . . . 8 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ V
103, 9eqeltri 2909 . . . . . . 7 𝐼 ∈ V
1110snid 4601 . . . . . 6 𝐼 ∈ {𝐼}
12 elun1 4152 . . . . . 6 (𝐼 ∈ {𝐼} → 𝐼 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
1311, 12ax-mp 5 . . . . 5 𝐼 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
1413, 5eleqtrri 2912 . . . 4 𝐼𝐵
15 id 22 . . . . 5 (𝐼𝐵𝐼𝐵)
16 coeq1 5728 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑎𝑏) = (𝐼𝑏))
1716eqeq1d 2823 . . . . . . . 8 (𝑎 = 𝐼 → ((𝑎𝑏) = 𝑏 ↔ (𝐼𝑏) = 𝑏))
18 coeq2 5729 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑏𝑎) = (𝑏𝐼))
1918eqeq1d 2823 . . . . . . . 8 (𝑎 = 𝐼 → ((𝑏𝑎) = 𝑏 ↔ (𝑏𝐼) = 𝑏))
2017, 19anbi12d 632 . . . . . . 7 (𝑎 = 𝐼 → (((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
2120ralbidv 3197 . . . . . 6 (𝑎 = 𝐼 → (∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
2221adantl 484 . . . . 5 ((𝐼𝐵𝑎 = 𝐼) → (∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
231, 2, 3, 4, 5, 6smndex1mndlem 18074 . . . . . . 7 (𝑏𝐵 → ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏))
2423rgen 3148 . . . . . 6 𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)
2524a1i 11 . . . . 5 (𝐼𝐵 → ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏))
2615, 22, 25rspcedvd 3626 . . . 4 (𝐼𝐵 → ∃𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏))
2714, 26ax-mp 5 . . 3 𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)
281, 2, 3, 4, 5smndex1basss 18070 . . . . . . 7 𝐵 ⊆ (Base‘𝑀)
29 ssel 3961 . . . . . . . 8 (𝐵 ⊆ (Base‘𝑀) → (𝑎𝐵𝑎 ∈ (Base‘𝑀)))
30 ssel 3961 . . . . . . . 8 (𝐵 ⊆ (Base‘𝑀) → (𝑏𝐵𝑏 ∈ (Base‘𝑀)))
3129, 30anim12d 610 . . . . . . 7 (𝐵 ⊆ (Base‘𝑀) → ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀))))
3228, 31ax-mp 5 . . . . . 6 ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)))
33 eqid 2821 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
34 snex 5332 . . . . . . . . . . . . 13 {𝐼} ∈ V
35 ovex 7189 . . . . . . . . . . . . . 14 (0..^𝑁) ∈ V
36 snex 5332 . . . . . . . . . . . . . 14 {(𝐺𝑛)} ∈ V
3735, 36iunex 7669 . . . . . . . . . . . . 13 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ∈ V
3834, 37unex 7469 . . . . . . . . . . . 12 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ∈ V
395, 38eqeltri 2909 . . . . . . . . . . 11 𝐵 ∈ V
40 eqid 2821 . . . . . . . . . . . 12 (+g𝑀) = (+g𝑀)
416, 40ressplusg 16612 . . . . . . . . . . 11 (𝐵 ∈ V → (+g𝑀) = (+g𝑆))
4239, 41ax-mp 5 . . . . . . . . . 10 (+g𝑀) = (+g𝑆)
4342eqcomi 2830 . . . . . . . . 9 (+g𝑆) = (+g𝑀)
441, 33, 43efmndov 18046 . . . . . . . 8 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑎(+g𝑆)𝑏) = (𝑎𝑏))
4544eqeq1d 2823 . . . . . . 7 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → ((𝑎(+g𝑆)𝑏) = 𝑏 ↔ (𝑎𝑏) = 𝑏))
4643oveqi 7169 . . . . . . . . 9 (𝑏(+g𝑆)𝑎) = (𝑏(+g𝑀)𝑎)
471, 33, 40efmndov 18046 . . . . . . . . . 10 ((𝑏 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝑏(+g𝑀)𝑎) = (𝑏𝑎))
4847ancoms 461 . . . . . . . . 9 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑏(+g𝑀)𝑎) = (𝑏𝑎))
4946, 48syl5eq 2868 . . . . . . . 8 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑏(+g𝑆)𝑎) = (𝑏𝑎))
5049eqeq1d 2823 . . . . . . 7 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → ((𝑏(+g𝑆)𝑎) = 𝑏 ↔ (𝑏𝑎) = 𝑏))
5145, 50anbi12d 632 . . . . . 6 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5232, 51syl 17 . . . . 5 ((𝑎𝐵𝑏𝐵) → (((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5352ralbidva 3196 . . . 4 (𝑎𝐵 → (∀𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5453rexbiia 3246 . . 3 (∃𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ∃𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏))
5527, 54mpbir 233 . 2 𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏)
561, 2, 3, 4, 5, 6smndex1bas 18071 . . . 4 (Base‘𝑆) = 𝐵
5756eqcomi 2830 . . 3 𝐵 = (Base‘𝑆)
58 eqid 2821 . . 3 (+g𝑆) = (+g𝑆)
5957, 58ismnddef 17913 . 2 (𝑆 ∈ Mnd ↔ (𝑆 ∈ Smgrp ∧ ∃𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏)))
607, 55, 59mpbir2an 709 1 𝑆 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  cun 3934  wss 3936  {csn 4567   ciun 4919  cmpt 5146  ccom 5559  cfv 6355  (class class class)co 7156  0cc0 10537  cn 11638  0cn0 11898  ..^cfzo 13034   mod cmo 13238  Basecbs 16483  s cress 16484  +gcplusg 16565  Smgrpcsgrp 17900  Mndcmnd 17911  EndoFMndcefmnd 18033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-tset 16584  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-efmnd 18034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator