MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1mnd Structured version   Visualization version   GIF version

Theorem smndex1mnd 18802
Description: The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a monoid. (Contributed by AV, 16-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1mnd 𝑆 ∈ Mnd
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)

Proof of Theorem smndex1mnd
Dummy variables 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.m . . 3 𝑀 = (EndoFMnd‘ℕ0)
2 smndex1ibas.n . . 3 𝑁 ∈ ℕ
3 smndex1ibas.i . . 3 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
4 smndex1ibas.g . . 3 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
5 smndex1mgm.b . . 3 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
6 smndex1mgm.s . . 3 𝑆 = (𝑀s 𝐵)
71, 2, 3, 4, 5, 6smndex1sgrp 18800 . 2 𝑆 ∈ Smgrp
8 nn0ex 12408 . . . . . . . . 9 0 ∈ V
98mptex 7163 . . . . . . . 8 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ V
103, 9eqeltri 2824 . . . . . . 7 𝐼 ∈ V
1110snid 4616 . . . . . 6 𝐼 ∈ {𝐼}
12 elun1 4135 . . . . . 6 (𝐼 ∈ {𝐼} → 𝐼 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
1311, 12ax-mp 5 . . . . 5 𝐼 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
1413, 5eleqtrri 2827 . . . 4 𝐼𝐵
15 id 22 . . . . 5 (𝐼𝐵𝐼𝐵)
16 coeq1 5804 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑎𝑏) = (𝐼𝑏))
1716eqeq1d 2731 . . . . . . . 8 (𝑎 = 𝐼 → ((𝑎𝑏) = 𝑏 ↔ (𝐼𝑏) = 𝑏))
18 coeq2 5805 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑏𝑎) = (𝑏𝐼))
1918eqeq1d 2731 . . . . . . . 8 (𝑎 = 𝐼 → ((𝑏𝑎) = 𝑏 ↔ (𝑏𝐼) = 𝑏))
2017, 19anbi12d 632 . . . . . . 7 (𝑎 = 𝐼 → (((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
2120ralbidv 3152 . . . . . 6 (𝑎 = 𝐼 → (∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
2221adantl 481 . . . . 5 ((𝐼𝐵𝑎 = 𝐼) → (∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
231, 2, 3, 4, 5, 6smndex1mndlem 18801 . . . . . . 7 (𝑏𝐵 → ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏))
2423rgen 3046 . . . . . 6 𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)
2524a1i 11 . . . . 5 (𝐼𝐵 → ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏))
2615, 22, 25rspcedvd 3581 . . . 4 (𝐼𝐵 → ∃𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏))
2714, 26ax-mp 5 . . 3 𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)
281, 2, 3, 4, 5smndex1basss 18797 . . . . . . 7 𝐵 ⊆ (Base‘𝑀)
29 ssel 3931 . . . . . . . 8 (𝐵 ⊆ (Base‘𝑀) → (𝑎𝐵𝑎 ∈ (Base‘𝑀)))
30 ssel 3931 . . . . . . . 8 (𝐵 ⊆ (Base‘𝑀) → (𝑏𝐵𝑏 ∈ (Base‘𝑀)))
3129, 30anim12d 609 . . . . . . 7 (𝐵 ⊆ (Base‘𝑀) → ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀))))
3228, 31ax-mp 5 . . . . . 6 ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)))
33 eqid 2729 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
34 snex 5378 . . . . . . . . . . . . 13 {𝐼} ∈ V
35 ovex 7386 . . . . . . . . . . . . . 14 (0..^𝑁) ∈ V
36 snex 5378 . . . . . . . . . . . . . 14 {(𝐺𝑛)} ∈ V
3735, 36iunex 7910 . . . . . . . . . . . . 13 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ∈ V
3834, 37unex 7684 . . . . . . . . . . . 12 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ∈ V
395, 38eqeltri 2824 . . . . . . . . . . 11 𝐵 ∈ V
40 eqid 2729 . . . . . . . . . . . 12 (+g𝑀) = (+g𝑀)
416, 40ressplusg 17213 . . . . . . . . . . 11 (𝐵 ∈ V → (+g𝑀) = (+g𝑆))
4239, 41ax-mp 5 . . . . . . . . . 10 (+g𝑀) = (+g𝑆)
4342eqcomi 2738 . . . . . . . . 9 (+g𝑆) = (+g𝑀)
441, 33, 43efmndov 18773 . . . . . . . 8 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑎(+g𝑆)𝑏) = (𝑎𝑏))
4544eqeq1d 2731 . . . . . . 7 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → ((𝑎(+g𝑆)𝑏) = 𝑏 ↔ (𝑎𝑏) = 𝑏))
4643oveqi 7366 . . . . . . . . 9 (𝑏(+g𝑆)𝑎) = (𝑏(+g𝑀)𝑎)
471, 33, 40efmndov 18773 . . . . . . . . . 10 ((𝑏 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝑏(+g𝑀)𝑎) = (𝑏𝑎))
4847ancoms 458 . . . . . . . . 9 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑏(+g𝑀)𝑎) = (𝑏𝑎))
4946, 48eqtrid 2776 . . . . . . . 8 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑏(+g𝑆)𝑎) = (𝑏𝑎))
5049eqeq1d 2731 . . . . . . 7 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → ((𝑏(+g𝑆)𝑎) = 𝑏 ↔ (𝑏𝑎) = 𝑏))
5145, 50anbi12d 632 . . . . . 6 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5232, 51syl 17 . . . . 5 ((𝑎𝐵𝑏𝐵) → (((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5352ralbidva 3150 . . . 4 (𝑎𝐵 → (∀𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5453rexbiia 3074 . . 3 (∃𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ∃𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏))
5527, 54mpbir 231 . 2 𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏)
561, 2, 3, 4, 5, 6smndex1bas 18798 . . . 4 (Base‘𝑆) = 𝐵
5756eqcomi 2738 . . 3 𝐵 = (Base‘𝑆)
58 eqid 2729 . . 3 (+g𝑆) = (+g𝑆)
5957, 58ismnddef 18628 . 2 (𝑆 ∈ Mnd ↔ (𝑆 ∈ Smgrp ∧ ∃𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏)))
607, 55, 59mpbir2an 711 1 𝑆 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  cun 3903  wss 3905  {csn 4579   ciun 4944  cmpt 5176  ccom 5627  cfv 6486  (class class class)co 7353  0cc0 11028  cn 12146  0cn0 12402  ..^cfzo 13575   mod cmo 13791  Basecbs 17138  s cress 17159  +gcplusg 17179  Smgrpcsgrp 18610  Mndcmnd 18626  EndoFMndcefmnd 18760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-tset 17198  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-efmnd 18761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator