MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1mnd Structured version   Visualization version   GIF version

Theorem smndex1mnd 18923
Description: The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a monoid. (Contributed by AV, 16-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1mnd 𝑆 ∈ Mnd
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)

Proof of Theorem smndex1mnd
Dummy variables 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.m . . 3 𝑀 = (EndoFMnd‘ℕ0)
2 smndex1ibas.n . . 3 𝑁 ∈ ℕ
3 smndex1ibas.i . . 3 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
4 smndex1ibas.g . . 3 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
5 smndex1mgm.b . . 3 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
6 smndex1mgm.s . . 3 𝑆 = (𝑀s 𝐵)
71, 2, 3, 4, 5, 6smndex1sgrp 18921 . 2 𝑆 ∈ Smgrp
8 nn0ex 12532 . . . . . . . . 9 0 ∈ V
98mptex 7243 . . . . . . . 8 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ V
103, 9eqeltri 2837 . . . . . . 7 𝐼 ∈ V
1110snid 4662 . . . . . 6 𝐼 ∈ {𝐼}
12 elun1 4182 . . . . . 6 (𝐼 ∈ {𝐼} → 𝐼 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
1311, 12ax-mp 5 . . . . 5 𝐼 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
1413, 5eleqtrri 2840 . . . 4 𝐼𝐵
15 id 22 . . . . 5 (𝐼𝐵𝐼𝐵)
16 coeq1 5868 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑎𝑏) = (𝐼𝑏))
1716eqeq1d 2739 . . . . . . . 8 (𝑎 = 𝐼 → ((𝑎𝑏) = 𝑏 ↔ (𝐼𝑏) = 𝑏))
18 coeq2 5869 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑏𝑎) = (𝑏𝐼))
1918eqeq1d 2739 . . . . . . . 8 (𝑎 = 𝐼 → ((𝑏𝑎) = 𝑏 ↔ (𝑏𝐼) = 𝑏))
2017, 19anbi12d 632 . . . . . . 7 (𝑎 = 𝐼 → (((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
2120ralbidv 3178 . . . . . 6 (𝑎 = 𝐼 → (∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
2221adantl 481 . . . . 5 ((𝐼𝐵𝑎 = 𝐼) → (∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
231, 2, 3, 4, 5, 6smndex1mndlem 18922 . . . . . . 7 (𝑏𝐵 → ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏))
2423rgen 3063 . . . . . 6 𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)
2524a1i 11 . . . . 5 (𝐼𝐵 → ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏))
2615, 22, 25rspcedvd 3624 . . . 4 (𝐼𝐵 → ∃𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏))
2714, 26ax-mp 5 . . 3 𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)
281, 2, 3, 4, 5smndex1basss 18918 . . . . . . 7 𝐵 ⊆ (Base‘𝑀)
29 ssel 3977 . . . . . . . 8 (𝐵 ⊆ (Base‘𝑀) → (𝑎𝐵𝑎 ∈ (Base‘𝑀)))
30 ssel 3977 . . . . . . . 8 (𝐵 ⊆ (Base‘𝑀) → (𝑏𝐵𝑏 ∈ (Base‘𝑀)))
3129, 30anim12d 609 . . . . . . 7 (𝐵 ⊆ (Base‘𝑀) → ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀))))
3228, 31ax-mp 5 . . . . . 6 ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)))
33 eqid 2737 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
34 snex 5436 . . . . . . . . . . . . 13 {𝐼} ∈ V
35 ovex 7464 . . . . . . . . . . . . . 14 (0..^𝑁) ∈ V
36 snex 5436 . . . . . . . . . . . . . 14 {(𝐺𝑛)} ∈ V
3735, 36iunex 7993 . . . . . . . . . . . . 13 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ∈ V
3834, 37unex 7764 . . . . . . . . . . . 12 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ∈ V
395, 38eqeltri 2837 . . . . . . . . . . 11 𝐵 ∈ V
40 eqid 2737 . . . . . . . . . . . 12 (+g𝑀) = (+g𝑀)
416, 40ressplusg 17334 . . . . . . . . . . 11 (𝐵 ∈ V → (+g𝑀) = (+g𝑆))
4239, 41ax-mp 5 . . . . . . . . . 10 (+g𝑀) = (+g𝑆)
4342eqcomi 2746 . . . . . . . . 9 (+g𝑆) = (+g𝑀)
441, 33, 43efmndov 18894 . . . . . . . 8 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑎(+g𝑆)𝑏) = (𝑎𝑏))
4544eqeq1d 2739 . . . . . . 7 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → ((𝑎(+g𝑆)𝑏) = 𝑏 ↔ (𝑎𝑏) = 𝑏))
4643oveqi 7444 . . . . . . . . 9 (𝑏(+g𝑆)𝑎) = (𝑏(+g𝑀)𝑎)
471, 33, 40efmndov 18894 . . . . . . . . . 10 ((𝑏 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝑏(+g𝑀)𝑎) = (𝑏𝑎))
4847ancoms 458 . . . . . . . . 9 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑏(+g𝑀)𝑎) = (𝑏𝑎))
4946, 48eqtrid 2789 . . . . . . . 8 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑏(+g𝑆)𝑎) = (𝑏𝑎))
5049eqeq1d 2739 . . . . . . 7 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → ((𝑏(+g𝑆)𝑎) = 𝑏 ↔ (𝑏𝑎) = 𝑏))
5145, 50anbi12d 632 . . . . . 6 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5232, 51syl 17 . . . . 5 ((𝑎𝐵𝑏𝐵) → (((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5352ralbidva 3176 . . . 4 (𝑎𝐵 → (∀𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5453rexbiia 3092 . . 3 (∃𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ∃𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏))
5527, 54mpbir 231 . 2 𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏)
561, 2, 3, 4, 5, 6smndex1bas 18919 . . . 4 (Base‘𝑆) = 𝐵
5756eqcomi 2746 . . 3 𝐵 = (Base‘𝑆)
58 eqid 2737 . . 3 (+g𝑆) = (+g𝑆)
5957, 58ismnddef 18749 . 2 (𝑆 ∈ Mnd ↔ (𝑆 ∈ Smgrp ∧ ∃𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏)))
607, 55, 59mpbir2an 711 1 𝑆 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  cun 3949  wss 3951  {csn 4626   ciun 4991  cmpt 5225  ccom 5689  cfv 6561  (class class class)co 7431  0cc0 11155  cn 12266  0cn0 12526  ..^cfzo 13694   mod cmo 13909  Basecbs 17247  s cress 17274  +gcplusg 17297  Smgrpcsgrp 18731  Mndcmnd 18747  EndoFMndcefmnd 18881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-tset 17316  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-efmnd 18882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator