MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1mnd Structured version   Visualization version   GIF version

Theorem smndex1mnd 18720
Description: The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a monoid. (Contributed by AV, 16-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1mnd 𝑆 ∈ Mnd
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)

Proof of Theorem smndex1mnd
Dummy variables 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.m . . 3 𝑀 = (EndoFMnd‘ℕ0)
2 smndex1ibas.n . . 3 𝑁 ∈ ℕ
3 smndex1ibas.i . . 3 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
4 smndex1ibas.g . . 3 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
5 smndex1mgm.b . . 3 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
6 smndex1mgm.s . . 3 𝑆 = (𝑀s 𝐵)
71, 2, 3, 4, 5, 6smndex1sgrp 18718 . 2 𝑆 ∈ Smgrp
8 nn0ex 12419 . . . . . . . . 9 0 ∈ V
98mptex 7173 . . . . . . . 8 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ V
103, 9eqeltri 2834 . . . . . . 7 𝐼 ∈ V
1110snid 4622 . . . . . 6 𝐼 ∈ {𝐼}
12 elun1 4136 . . . . . 6 (𝐼 ∈ {𝐼} → 𝐼 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
1311, 12ax-mp 5 . . . . 5 𝐼 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
1413, 5eleqtrri 2837 . . . 4 𝐼𝐵
15 id 22 . . . . 5 (𝐼𝐵𝐼𝐵)
16 coeq1 5813 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑎𝑏) = (𝐼𝑏))
1716eqeq1d 2738 . . . . . . . 8 (𝑎 = 𝐼 → ((𝑎𝑏) = 𝑏 ↔ (𝐼𝑏) = 𝑏))
18 coeq2 5814 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑏𝑎) = (𝑏𝐼))
1918eqeq1d 2738 . . . . . . . 8 (𝑎 = 𝐼 → ((𝑏𝑎) = 𝑏 ↔ (𝑏𝐼) = 𝑏))
2017, 19anbi12d 631 . . . . . . 7 (𝑎 = 𝐼 → (((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
2120ralbidv 3174 . . . . . 6 (𝑎 = 𝐼 → (∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
2221adantl 482 . . . . 5 ((𝐼𝐵𝑎 = 𝐼) → (∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
231, 2, 3, 4, 5, 6smndex1mndlem 18719 . . . . . . 7 (𝑏𝐵 → ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏))
2423rgen 3066 . . . . . 6 𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)
2524a1i 11 . . . . 5 (𝐼𝐵 → ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏))
2615, 22, 25rspcedvd 3583 . . . 4 (𝐼𝐵 → ∃𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏))
2714, 26ax-mp 5 . . 3 𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)
281, 2, 3, 4, 5smndex1basss 18715 . . . . . . 7 𝐵 ⊆ (Base‘𝑀)
29 ssel 3937 . . . . . . . 8 (𝐵 ⊆ (Base‘𝑀) → (𝑎𝐵𝑎 ∈ (Base‘𝑀)))
30 ssel 3937 . . . . . . . 8 (𝐵 ⊆ (Base‘𝑀) → (𝑏𝐵𝑏 ∈ (Base‘𝑀)))
3129, 30anim12d 609 . . . . . . 7 (𝐵 ⊆ (Base‘𝑀) → ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀))))
3228, 31ax-mp 5 . . . . . 6 ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)))
33 eqid 2736 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
34 snex 5388 . . . . . . . . . . . . 13 {𝐼} ∈ V
35 ovex 7390 . . . . . . . . . . . . . 14 (0..^𝑁) ∈ V
36 snex 5388 . . . . . . . . . . . . . 14 {(𝐺𝑛)} ∈ V
3735, 36iunex 7901 . . . . . . . . . . . . 13 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ∈ V
3834, 37unex 7680 . . . . . . . . . . . 12 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ∈ V
395, 38eqeltri 2834 . . . . . . . . . . 11 𝐵 ∈ V
40 eqid 2736 . . . . . . . . . . . 12 (+g𝑀) = (+g𝑀)
416, 40ressplusg 17171 . . . . . . . . . . 11 (𝐵 ∈ V → (+g𝑀) = (+g𝑆))
4239, 41ax-mp 5 . . . . . . . . . 10 (+g𝑀) = (+g𝑆)
4342eqcomi 2745 . . . . . . . . 9 (+g𝑆) = (+g𝑀)
441, 33, 43efmndov 18691 . . . . . . . 8 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑎(+g𝑆)𝑏) = (𝑎𝑏))
4544eqeq1d 2738 . . . . . . 7 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → ((𝑎(+g𝑆)𝑏) = 𝑏 ↔ (𝑎𝑏) = 𝑏))
4643oveqi 7370 . . . . . . . . 9 (𝑏(+g𝑆)𝑎) = (𝑏(+g𝑀)𝑎)
471, 33, 40efmndov 18691 . . . . . . . . . 10 ((𝑏 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝑏(+g𝑀)𝑎) = (𝑏𝑎))
4847ancoms 459 . . . . . . . . 9 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑏(+g𝑀)𝑎) = (𝑏𝑎))
4946, 48eqtrid 2788 . . . . . . . 8 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑏(+g𝑆)𝑎) = (𝑏𝑎))
5049eqeq1d 2738 . . . . . . 7 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → ((𝑏(+g𝑆)𝑎) = 𝑏 ↔ (𝑏𝑎) = 𝑏))
5145, 50anbi12d 631 . . . . . 6 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5232, 51syl 17 . . . . 5 ((𝑎𝐵𝑏𝐵) → (((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5352ralbidva 3172 . . . 4 (𝑎𝐵 → (∀𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5453rexbiia 3095 . . 3 (∃𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ∃𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏))
5527, 54mpbir 230 . 2 𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏)
561, 2, 3, 4, 5, 6smndex1bas 18716 . . . 4 (Base‘𝑆) = 𝐵
5756eqcomi 2745 . . 3 𝐵 = (Base‘𝑆)
58 eqid 2736 . . 3 (+g𝑆) = (+g𝑆)
5957, 58ismnddef 18558 . 2 (𝑆 ∈ Mnd ↔ (𝑆 ∈ Smgrp ∧ ∃𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏)))
607, 55, 59mpbir2an 709 1 𝑆 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cun 3908  wss 3910  {csn 4586   ciun 4954  cmpt 5188  ccom 5637  cfv 6496  (class class class)co 7357  0cc0 11051  cn 12153  0cn0 12413  ..^cfzo 13567   mod cmo 13774  Basecbs 17083  s cress 17112  +gcplusg 17133  Smgrpcsgrp 18545  Mndcmnd 18556  EndoFMndcefmnd 18678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-tset 17152  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-efmnd 18679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator