MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1mnd Structured version   Visualization version   GIF version

Theorem smndex1mnd 18066
Description: The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a monoid. (Contributed by AV, 16-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1mnd 𝑆 ∈ Mnd
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)

Proof of Theorem smndex1mnd
Dummy variables 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.m . . 3 𝑀 = (EndoFMnd‘ℕ0)
2 smndex1ibas.n . . 3 𝑁 ∈ ℕ
3 smndex1ibas.i . . 3 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
4 smndex1ibas.g . . 3 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
5 smndex1mgm.b . . 3 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
6 smndex1mgm.s . . 3 𝑆 = (𝑀s 𝐵)
71, 2, 3, 4, 5, 6smndex1sgrp 18064 . 2 𝑆 ∈ Smgrp
8 nn0ex 11891 . . . . . . . . 9 0 ∈ V
98mptex 6969 . . . . . . . 8 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ V
103, 9eqeltri 2912 . . . . . . 7 𝐼 ∈ V
1110snid 4584 . . . . . 6 𝐼 ∈ {𝐼}
12 elun1 4136 . . . . . 6 (𝐼 ∈ {𝐼} → 𝐼 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
1311, 12ax-mp 5 . . . . 5 𝐼 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
1413, 5eleqtrri 2915 . . . 4 𝐼𝐵
15 id 22 . . . . 5 (𝐼𝐵𝐼𝐵)
16 coeq1 5711 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑎𝑏) = (𝐼𝑏))
1716eqeq1d 2826 . . . . . . . 8 (𝑎 = 𝐼 → ((𝑎𝑏) = 𝑏 ↔ (𝐼𝑏) = 𝑏))
18 coeq2 5712 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑏𝑎) = (𝑏𝐼))
1918eqeq1d 2826 . . . . . . . 8 (𝑎 = 𝐼 → ((𝑏𝑎) = 𝑏 ↔ (𝑏𝐼) = 𝑏))
2017, 19anbi12d 633 . . . . . . 7 (𝑎 = 𝐼 → (((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
2120ralbidv 3191 . . . . . 6 (𝑎 = 𝐼 → (∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
2221adantl 485 . . . . 5 ((𝐼𝐵𝑎 = 𝐼) → (∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)))
231, 2, 3, 4, 5, 6smndex1mndlem 18065 . . . . . . 7 (𝑏𝐵 → ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏))
2423rgen 3142 . . . . . 6 𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏)
2524a1i 11 . . . . 5 (𝐼𝐵 → ∀𝑏𝐵 ((𝐼𝑏) = 𝑏 ∧ (𝑏𝐼) = 𝑏))
2615, 22, 25rspcedvd 3611 . . . 4 (𝐼𝐵 → ∃𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏))
2714, 26ax-mp 5 . . 3 𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)
281, 2, 3, 4, 5smndex1basss 18061 . . . . . . 7 𝐵 ⊆ (Base‘𝑀)
29 ssel 3945 . . . . . . . 8 (𝐵 ⊆ (Base‘𝑀) → (𝑎𝐵𝑎 ∈ (Base‘𝑀)))
30 ssel 3945 . . . . . . . 8 (𝐵 ⊆ (Base‘𝑀) → (𝑏𝐵𝑏 ∈ (Base‘𝑀)))
3129, 30anim12d 611 . . . . . . 7 (𝐵 ⊆ (Base‘𝑀) → ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀))))
3228, 31ax-mp 5 . . . . . 6 ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)))
33 eqid 2824 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
34 snex 5315 . . . . . . . . . . . . 13 {𝐼} ∈ V
35 ovex 7173 . . . . . . . . . . . . . 14 (0..^𝑁) ∈ V
36 snex 5315 . . . . . . . . . . . . . 14 {(𝐺𝑛)} ∈ V
3735, 36iunex 7654 . . . . . . . . . . . . 13 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ∈ V
3834, 37unex 7454 . . . . . . . . . . . 12 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ∈ V
395, 38eqeltri 2912 . . . . . . . . . . 11 𝐵 ∈ V
40 eqid 2824 . . . . . . . . . . . 12 (+g𝑀) = (+g𝑀)
416, 40ressplusg 16603 . . . . . . . . . . 11 (𝐵 ∈ V → (+g𝑀) = (+g𝑆))
4239, 41ax-mp 5 . . . . . . . . . 10 (+g𝑀) = (+g𝑆)
4342eqcomi 2833 . . . . . . . . 9 (+g𝑆) = (+g𝑀)
441, 33, 43efmndov 18037 . . . . . . . 8 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑎(+g𝑆)𝑏) = (𝑎𝑏))
4544eqeq1d 2826 . . . . . . 7 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → ((𝑎(+g𝑆)𝑏) = 𝑏 ↔ (𝑎𝑏) = 𝑏))
4643oveqi 7153 . . . . . . . . 9 (𝑏(+g𝑆)𝑎) = (𝑏(+g𝑀)𝑎)
471, 33, 40efmndov 18037 . . . . . . . . . 10 ((𝑏 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝑏(+g𝑀)𝑎) = (𝑏𝑎))
4847ancoms 462 . . . . . . . . 9 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑏(+g𝑀)𝑎) = (𝑏𝑎))
4946, 48syl5eq 2871 . . . . . . . 8 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑏(+g𝑆)𝑎) = (𝑏𝑎))
5049eqeq1d 2826 . . . . . . 7 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → ((𝑏(+g𝑆)𝑎) = 𝑏 ↔ (𝑏𝑎) = 𝑏))
5145, 50anbi12d 633 . . . . . 6 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5232, 51syl 17 . . . . 5 ((𝑎𝐵𝑏𝐵) → (((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5352ralbidva 3190 . . . 4 (𝑎𝐵 → (∀𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ∀𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏)))
5453rexbiia 3240 . . 3 (∃𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏) ↔ ∃𝑎𝐵𝑏𝐵 ((𝑎𝑏) = 𝑏 ∧ (𝑏𝑎) = 𝑏))
5527, 54mpbir 234 . 2 𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏)
561, 2, 3, 4, 5, 6smndex1bas 18062 . . . 4 (Base‘𝑆) = 𝐵
5756eqcomi 2833 . . 3 𝐵 = (Base‘𝑆)
58 eqid 2824 . . 3 (+g𝑆) = (+g𝑆)
5957, 58ismnddef 17904 . 2 (𝑆 ∈ Mnd ↔ (𝑆 ∈ Smgrp ∧ ∃𝑎𝐵𝑏𝐵 ((𝑎(+g𝑆)𝑏) = 𝑏 ∧ (𝑏(+g𝑆)𝑎) = 𝑏)))
607, 55, 59mpbir2an 710 1 𝑆 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3132  wrex 3133  Vcvv 3479  cun 3916  wss 3918  {csn 4548   ciun 4902  cmpt 5129  ccom 5542  cfv 6338  (class class class)co 7140  0cc0 10524  cn 11625  0cn0 11885  ..^cfzo 13028   mod cmo 13232  Basecbs 16474  s cress 16475  +gcplusg 16556  Smgrpcsgrp 17891  Mndcmnd 17902  EndoFMndcefmnd 18024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601  ax-pre-sup 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-int 4860  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7674  df-2nd 7675  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-inf 8893  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-div 11285  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-tset 16575  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-efmnd 18025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator