MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnd1 Structured version   Visualization version   GIF version

Theorem mnd1 18524
Description: The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
Hypothesis
Ref Expression
mnd1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
mnd1 (𝐼𝑉𝑀 ∈ Mnd)

Proof of Theorem mnd1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnd1.m . . 3 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21sgrp1 18482 . 2 (𝐼𝑉𝑀 ∈ Smgrp)
3 df-ov 7345 . . . . 5 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
4 opex 5414 . . . . . 6 𝐼, 𝐼⟩ ∈ V
5 fvsng 7113 . . . . . 6 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
64, 5mpan 688 . . . . 5 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
73, 6eqtrid 2789 . . . 4 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
8 oveq2 7350 . . . . . . 7 (𝑦 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
9 id 22 . . . . . . 7 (𝑦 = 𝐼𝑦 = 𝐼)
108, 9eqeq12d 2753 . . . . . 6 (𝑦 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
11 oveq1 7349 . . . . . . 7 (𝑦 = 𝐼 → (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1211, 9eqeq12d 2753 . . . . . 6 (𝑦 = 𝐼 → ((𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
1310, 12anbi12d 632 . . . . 5 (𝑦 = 𝐼 → (((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼 ∧ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)))
1413ralsng 4626 . . . 4 (𝐼𝑉 → (∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼 ∧ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)))
157, 7, 14mpbir2and 711 . . 3 (𝐼𝑉 → ∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦))
16 oveq1 7349 . . . . . 6 (𝑥 = 𝐼 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦))
1716eqeq1d 2739 . . . . 5 (𝑥 = 𝐼 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦))
1817ovanraleqv 7366 . . . 4 (𝑥 = 𝐼 → (∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦)))
1918rexsng 4627 . . 3 (𝐼𝑉 → (∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦)))
2015, 19mpbird 257 . 2 (𝐼𝑉 → ∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦))
21 snex 5381 . . . 4 {𝐼} ∈ V
221grpbase 17094 . . . 4 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
2321, 22ax-mp 5 . . 3 {𝐼} = (Base‘𝑀)
24 snex 5381 . . . 4 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
251grpplusg 17096 . . . 4 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
2624, 25ax-mp 5 . . 3 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀)
2723, 26ismnddef 18485 . 2 (𝑀 ∈ Mnd ↔ (𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦)))
282, 20, 27sylanbrc 584 1 (𝐼𝑉𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  wral 3062  wrex 3071  Vcvv 3442  {csn 4578  {cpr 4580  cop 4584  cfv 6484  (class class class)co 7342  ndxcnx 16992  Basecbs 17010  +gcplusg 17060  Smgrpcsgrp 18472  Mndcmnd 18483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-2 12142  df-n0 12340  df-z 12426  df-uz 12689  df-fz 13346  df-struct 16946  df-slot 16981  df-ndx 16993  df-base 17011  df-plusg 17073  df-mgm 18424  df-sgrp 18473  df-mnd 18484
This theorem is referenced by:  grp1  18779  ring1  19936
  Copyright terms: Public domain W3C validator