Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnd1 | Structured version Visualization version GIF version |
Description: The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.) |
Ref | Expression |
---|---|
mnd1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
Ref | Expression |
---|---|
mnd1 | ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnd1.m | . . 3 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
2 | 1 | sgrp1 18482 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Smgrp) |
3 | df-ov 7345 | . . . . 5 ⊢ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) | |
4 | opex 5414 | . . . . . 6 ⊢ 〈𝐼, 𝐼〉 ∈ V | |
5 | fvsng 7113 | . . . . . 6 ⊢ ((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) | |
6 | 4, 5 | mpan 688 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) |
7 | 3, 6 | eqtrid 2789 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼) |
8 | oveq2 7350 | . . . . . . 7 ⊢ (𝑦 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
9 | id 22 | . . . . . . 7 ⊢ (𝑦 = 𝐼 → 𝑦 = 𝐼) | |
10 | 8, 9 | eqeq12d 2753 | . . . . . 6 ⊢ (𝑦 = 𝐼 → ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼)) |
11 | oveq1 7349 | . . . . . . 7 ⊢ (𝑦 = 𝐼 → (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
12 | 11, 9 | eqeq12d 2753 | . . . . . 6 ⊢ (𝑦 = 𝐼 → ((𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑦 ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼)) |
13 | 10, 12 | anbi12d 632 | . . . . 5 ⊢ (𝑦 = 𝐼 → (((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑦) ↔ ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼 ∧ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼))) |
14 | 13 | ralsng 4626 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑦 ∈ {𝐼} ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑦) ↔ ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼 ∧ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼))) |
15 | 7, 7, 14 | mpbir2and 711 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ∀𝑦 ∈ {𝐼} ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑦)) |
16 | oveq1 7349 | . . . . . 6 ⊢ (𝑥 = 𝐼 → (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦)) | |
17 | 16 | eqeq1d 2739 | . . . . 5 ⊢ (𝑥 = 𝐼 → ((𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦)) |
18 | 17 | ovanraleqv 7366 | . . . 4 ⊢ (𝑥 = 𝐼 → (∀𝑦 ∈ {𝐼} ((𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝑥) = 𝑦) ↔ ∀𝑦 ∈ {𝐼} ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑦))) |
19 | 18 | rexsng 4627 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝑥) = 𝑦) ↔ ∀𝑦 ∈ {𝐼} ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑦))) |
20 | 15, 19 | mpbird 257 | . 2 ⊢ (𝐼 ∈ 𝑉 → ∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝑥) = 𝑦)) |
21 | snex 5381 | . . . 4 ⊢ {𝐼} ∈ V | |
22 | 1 | grpbase 17094 | . . . 4 ⊢ ({𝐼} ∈ V → {𝐼} = (Base‘𝑀)) |
23 | 21, 22 | ax-mp 5 | . . 3 ⊢ {𝐼} = (Base‘𝑀) |
24 | snex 5381 | . . . 4 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V | |
25 | 1 | grpplusg 17096 | . . . 4 ⊢ ({〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
26 | 24, 25 | ax-mp 5 | . . 3 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀) |
27 | 23, 26 | ismnddef 18485 | . 2 ⊢ (𝑀 ∈ Mnd ↔ (𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝑥) = 𝑦))) |
28 | 2, 20, 27 | sylanbrc 584 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ∃wrex 3071 Vcvv 3442 {csn 4578 {cpr 4580 〈cop 4584 ‘cfv 6484 (class class class)co 7342 ndxcnx 16992 Basecbs 17010 +gcplusg 17060 Smgrpcsgrp 18472 Mndcmnd 18483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-n0 12340 df-z 12426 df-uz 12689 df-fz 13346 df-struct 16946 df-slot 16981 df-ndx 16993 df-base 17011 df-plusg 17073 df-mgm 18424 df-sgrp 18473 df-mnd 18484 |
This theorem is referenced by: grp1 18779 ring1 19936 |
Copyright terms: Public domain | W3C validator |