| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnd1 | Structured version Visualization version GIF version | ||
| Description: The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.) |
| Ref | Expression |
|---|---|
| mnd1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
| Ref | Expression |
|---|---|
| mnd1 | ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnd1.m | . . 3 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
| 2 | 1 | sgrp1 18707 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Smgrp) |
| 3 | df-ov 7408 | . . . . 5 ⊢ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) | |
| 4 | opex 5439 | . . . . . 6 ⊢ 〈𝐼, 𝐼〉 ∈ V | |
| 5 | fvsng 7172 | . . . . . 6 ⊢ ((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) | |
| 6 | 4, 5 | mpan 690 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) |
| 7 | 3, 6 | eqtrid 2782 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼) |
| 8 | oveq2 7413 | . . . . . . 7 ⊢ (𝑦 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
| 9 | id 22 | . . . . . . 7 ⊢ (𝑦 = 𝐼 → 𝑦 = 𝐼) | |
| 10 | 8, 9 | eqeq12d 2751 | . . . . . 6 ⊢ (𝑦 = 𝐼 → ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼)) |
| 11 | oveq1 7412 | . . . . . . 7 ⊢ (𝑦 = 𝐼 → (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
| 12 | 11, 9 | eqeq12d 2751 | . . . . . 6 ⊢ (𝑦 = 𝐼 → ((𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑦 ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼)) |
| 13 | 10, 12 | anbi12d 632 | . . . . 5 ⊢ (𝑦 = 𝐼 → (((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑦) ↔ ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼 ∧ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼))) |
| 14 | 13 | ralsng 4651 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑦 ∈ {𝐼} ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑦) ↔ ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼 ∧ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼))) |
| 15 | 7, 7, 14 | mpbir2and 713 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ∀𝑦 ∈ {𝐼} ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑦)) |
| 16 | oveq1 7412 | . . . . . 6 ⊢ (𝑥 = 𝐼 → (𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦)) | |
| 17 | 16 | eqeq1d 2737 | . . . . 5 ⊢ (𝑥 = 𝐼 → ((𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦)) |
| 18 | 17 | ovanraleqv 7429 | . . . 4 ⊢ (𝑥 = 𝐼 → (∀𝑦 ∈ {𝐼} ((𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝑥) = 𝑦) ↔ ∀𝑦 ∈ {𝐼} ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑦))) |
| 19 | 18 | rexsng 4652 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝑥) = 𝑦) ↔ ∀𝑦 ∈ {𝐼} ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑦))) |
| 20 | 15, 19 | mpbird 257 | . 2 ⊢ (𝐼 ∈ 𝑉 → ∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝑥) = 𝑦)) |
| 21 | snex 5406 | . . . 4 ⊢ {𝐼} ∈ V | |
| 22 | 1 | grpbase 17303 | . . . 4 ⊢ ({𝐼} ∈ V → {𝐼} = (Base‘𝑀)) |
| 23 | 21, 22 | ax-mp 5 | . . 3 ⊢ {𝐼} = (Base‘𝑀) |
| 24 | snex 5406 | . . . 4 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V | |
| 25 | 1 | grpplusg 17304 | . . . 4 ⊢ ({〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
| 26 | 24, 25 | ax-mp 5 | . . 3 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀) |
| 27 | 23, 26 | ismnddef 18714 | . 2 ⊢ (𝑀 ∈ Mnd ↔ (𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{〈〈𝐼, 𝐼〉, 𝐼〉}𝑦) = 𝑦 ∧ (𝑦{〈〈𝐼, 𝐼〉, 𝐼〉}𝑥) = 𝑦))) |
| 28 | 2, 20, 27 | sylanbrc 583 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 Vcvv 3459 {csn 4601 {cpr 4603 〈cop 4607 ‘cfv 6531 (class class class)co 7405 ndxcnx 17212 Basecbs 17228 +gcplusg 17271 Smgrpcsgrp 18696 Mndcmnd 18712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mgm 18618 df-sgrp 18697 df-mnd 18713 |
| This theorem is referenced by: grp1 19030 ring1 20270 |
| Copyright terms: Public domain | W3C validator |