MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnd1 Structured version   Visualization version   GIF version

Theorem mnd1 18602
Description: The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
Hypothesis
Ref Expression
mnd1.m 𝑀 = {⟨(Baseβ€˜ndx), {𝐼}⟩, ⟨(+gβ€˜ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
mnd1 (𝐼 ∈ 𝑉 β†’ 𝑀 ∈ Mnd)

Proof of Theorem mnd1
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnd1.m . . 3 𝑀 = {⟨(Baseβ€˜ndx), {𝐼}⟩, ⟨(+gβ€˜ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21sgrp1 18560 . 2 (𝐼 ∈ 𝑉 β†’ 𝑀 ∈ Smgrp)
3 df-ov 7361 . . . . 5 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}β€˜βŸ¨πΌ, 𝐼⟩)
4 opex 5422 . . . . . 6 ⟨𝐼, 𝐼⟩ ∈ V
5 fvsng 7127 . . . . . 6 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼 ∈ 𝑉) β†’ ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}β€˜βŸ¨πΌ, 𝐼⟩) = 𝐼)
64, 5mpan 689 . . . . 5 (𝐼 ∈ 𝑉 β†’ ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}β€˜βŸ¨πΌ, 𝐼⟩) = 𝐼)
73, 6eqtrid 2785 . . . 4 (𝐼 ∈ 𝑉 β†’ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
8 oveq2 7366 . . . . . . 7 (𝑦 = 𝐼 β†’ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
9 id 22 . . . . . . 7 (𝑦 = 𝐼 β†’ 𝑦 = 𝐼)
108, 9eqeq12d 2749 . . . . . 6 (𝑦 = 𝐼 β†’ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
11 oveq1 7365 . . . . . . 7 (𝑦 = 𝐼 β†’ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1211, 9eqeq12d 2749 . . . . . 6 (𝑦 = 𝐼 β†’ ((𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
1310, 12anbi12d 632 . . . . 5 (𝑦 = 𝐼 β†’ (((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼 ∧ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)))
1413ralsng 4635 . . . 4 (𝐼 ∈ 𝑉 β†’ (βˆ€π‘¦ ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼 ∧ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)))
157, 7, 14mpbir2and 712 . . 3 (𝐼 ∈ 𝑉 β†’ βˆ€π‘¦ ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦))
16 oveq1 7365 . . . . . 6 (π‘₯ = 𝐼 β†’ (π‘₯{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦))
1716eqeq1d 2735 . . . . 5 (π‘₯ = 𝐼 β†’ ((π‘₯{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦))
1817ovanraleqv 7382 . . . 4 (π‘₯ = 𝐼 β†’ (βˆ€π‘¦ ∈ {𝐼} ((π‘₯{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}π‘₯) = 𝑦) ↔ βˆ€π‘¦ ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦)))
1918rexsng 4636 . . 3 (𝐼 ∈ 𝑉 β†’ (βˆƒπ‘₯ ∈ {𝐼}βˆ€π‘¦ ∈ {𝐼} ((π‘₯{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}π‘₯) = 𝑦) ↔ βˆ€π‘¦ ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦)))
2015, 19mpbird 257 . 2 (𝐼 ∈ 𝑉 β†’ βˆƒπ‘₯ ∈ {𝐼}βˆ€π‘¦ ∈ {𝐼} ((π‘₯{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}π‘₯) = 𝑦))
21 snex 5389 . . . 4 {𝐼} ∈ V
221grpbase 17172 . . . 4 ({𝐼} ∈ V β†’ {𝐼} = (Baseβ€˜π‘€))
2321, 22ax-mp 5 . . 3 {𝐼} = (Baseβ€˜π‘€)
24 snex 5389 . . . 4 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
251grpplusg 17174 . . . 4 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V β†’ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+gβ€˜π‘€))
2624, 25ax-mp 5 . . 3 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+gβ€˜π‘€)
2723, 26ismnddef 18563 . 2 (𝑀 ∈ Mnd ↔ (𝑀 ∈ Smgrp ∧ βˆƒπ‘₯ ∈ {𝐼}βˆ€π‘¦ ∈ {𝐼} ((π‘₯{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}π‘₯) = 𝑦)))
282, 20, 27sylanbrc 584 1 (𝐼 ∈ 𝑉 β†’ 𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3444  {csn 4587  {cpr 4589  βŸ¨cop 4593  β€˜cfv 6497  (class class class)co 7358  ndxcnx 17070  Basecbs 17088  +gcplusg 17138  Smgrpcsgrp 18550  Mndcmnd 18561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-struct 17024  df-slot 17059  df-ndx 17071  df-base 17089  df-plusg 17151  df-mgm 18502  df-sgrp 18551  df-mnd 18562
This theorem is referenced by:  grp1  18859  ring1  20031
  Copyright terms: Public domain W3C validator