| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efmndmnd | Structured version Visualization version GIF version | ||
| Description: The monoid of endofunctions on a set 𝐴 is actually a monoid. (Contributed by AV, 31-Jan-2024.) |
| Ref | Expression |
|---|---|
| ielefmnd.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
| Ref | Expression |
|---|---|
| efmndmnd | ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ielefmnd.g | . . . 4 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
| 2 | 1 | efmndsgrp 18897 | . . 3 ⊢ 𝐺 ∈ Smgrp |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Smgrp) |
| 4 | 1 | ielefmnd 18898 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) |
| 5 | oveq1 7437 | . . . . . . 7 ⊢ (𝑖 = ( I ↾ 𝐴) → (𝑖(+g‘𝐺)𝑓) = (( I ↾ 𝐴)(+g‘𝐺)𝑓)) | |
| 6 | 5 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑖 = ( I ↾ 𝐴) → ((𝑖(+g‘𝐺)𝑓) = 𝑓 ↔ (( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓)) |
| 7 | oveq2 7438 | . . . . . . 7 ⊢ (𝑖 = ( I ↾ 𝐴) → (𝑓(+g‘𝐺)𝑖) = (𝑓(+g‘𝐺)( I ↾ 𝐴))) | |
| 8 | 7 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑖 = ( I ↾ 𝐴) → ((𝑓(+g‘𝐺)𝑖) = 𝑓 ↔ (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓)) |
| 9 | 6, 8 | anbi12d 630 | . . . . 5 ⊢ (𝑖 = ( I ↾ 𝐴) → (((𝑖(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)𝑖) = 𝑓) ↔ ((( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓))) |
| 10 | 9 | ralbidv 3171 | . . . 4 ⊢ (𝑖 = ( I ↾ 𝐴) → (∀𝑓 ∈ (Base‘𝐺)((𝑖(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)𝑖) = 𝑓) ↔ ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓))) |
| 11 | 10 | adantl 480 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑖 = ( I ↾ 𝐴)) → (∀𝑓 ∈ (Base‘𝐺)((𝑖(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)𝑖) = 𝑓) ↔ ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓))) |
| 12 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 13 | 1, 12 | efmndbasf 18886 | . . . . . . 7 ⊢ (𝑓 ∈ (Base‘𝐺) → 𝑓:𝐴⟶𝐴) |
| 14 | 13 | adantl 480 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴⟶𝐴) |
| 15 | fcoi2 6781 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓) | |
| 16 | fcoi1 6780 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐴 → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓) | |
| 17 | 15, 16 | jca 510 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐴 → ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)) |
| 18 | 14, 17 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)) |
| 19 | eqid 2729 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 20 | 1, 12, 19 | efmndov 18892 | . . . . . . . 8 ⊢ ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓)) |
| 21 | 4, 20 | sylan 578 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓)) |
| 22 | 21 | eqeq1d 2731 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓 ↔ (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)) |
| 23 | 4 | anim1ci 614 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺))) |
| 24 | 1, 12, 19 | efmndov 18892 | . . . . . . . 8 ⊢ ((𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴))) |
| 25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴))) |
| 26 | 25 | eqeq1d 2731 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓 ↔ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)) |
| 27 | 22, 26 | anbi12d 630 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (((( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓) ↔ ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓))) |
| 28 | 18, 27 | mpbird 256 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓)) |
| 29 | 28 | ralrimiva 3139 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓)) |
| 30 | 4, 11, 29 | rspcedvd 3622 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑖 ∈ (Base‘𝐺)∀𝑓 ∈ (Base‘𝐺)((𝑖(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)𝑖) = 𝑓)) |
| 31 | 12, 19 | ismnddef 18750 | . 2 ⊢ (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑖 ∈ (Base‘𝐺)∀𝑓 ∈ (Base‘𝐺)((𝑖(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)𝑖) = 𝑓))) |
| 32 | 3, 30, 31 | sylanbrc 581 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2100 ∀wral 3054 ∃wrex 3063 I cid 5583 ↾ cres 5688 ∘ ccom 5690 ⟶wf 6554 ‘cfv 6558 (class class class)co 7430 Basecbs 17234 +gcplusg 17287 Smgrpcsgrp 18732 Mndcmnd 18748 EndoFMndcefmnd 18879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2102 ax-9 2110 ax-10 2133 ax-11 2150 ax-12 2170 ax-ext 2700 ax-rep 5293 ax-sep 5307 ax-nul 5314 ax-pow 5373 ax-pr 5437 ax-un 7751 ax-cnex 11221 ax-resscn 11222 ax-1cn 11223 ax-icn 11224 ax-addcl 11225 ax-addrcl 11226 ax-mulcl 11227 ax-mulrcl 11228 ax-mulcom 11229 ax-addass 11230 ax-mulass 11231 ax-distr 11232 ax-i2m1 11233 ax-1ne0 11234 ax-1rid 11235 ax-rnegex 11236 ax-rrecex 11237 ax-cnre 11238 ax-pre-lttri 11239 ax-pre-lttrn 11240 ax-pre-ltadd 11241 ax-pre-mulgt0 11242 |
| This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2062 df-mo 2532 df-eu 2561 df-clab 2707 df-cleq 2721 df-clel 2806 df-nfc 2881 df-ne 2934 df-nel 3040 df-ral 3055 df-rex 3064 df-reu 3374 df-rab 3429 df-v 3474 df-sbc 3789 df-csb 3905 df-dif 3962 df-un 3964 df-in 3966 df-ss 3976 df-pss 3979 df-nul 4336 df-if 4537 df-pw 4612 df-sn 4637 df-pr 4639 df-tp 4641 df-op 4643 df-uni 4919 df-iun 5008 df-br 5157 df-opab 5219 df-mpt 5240 df-tr 5274 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5641 df-we 5643 df-xp 5692 df-rel 5693 df-cnv 5694 df-co 5695 df-dm 5696 df-rn 5697 df-res 5698 df-ima 5699 df-pred 6317 df-ord 6383 df-on 6384 df-lim 6385 df-suc 6386 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-riota 7386 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7885 df-1st 8011 df-2nd 8012 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8742 df-map 8865 df-en 8983 df-dom 8984 df-sdom 8985 df-fin 8986 df-pnf 11307 df-mnf 11308 df-xr 11309 df-ltxr 11310 df-le 11311 df-sub 11503 df-neg 11504 df-nn 12275 df-2 12337 df-3 12338 df-4 12339 df-5 12340 df-6 12341 df-7 12342 df-8 12343 df-9 12344 df-n0 12535 df-z 12621 df-uz 12885 df-fz 13549 df-struct 17170 df-slot 17205 df-ndx 17217 df-base 17235 df-plusg 17300 df-tset 17306 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-efmnd 18880 |
| This theorem is referenced by: efmnd0nmnd 18901 submefmnd 18906 sursubmefmnd 18907 injsubmefmnd 18908 idressubmefmnd 18909 idresefmnd 18910 symgsubmefmndALT 19423 efmndtmd 24119 |
| Copyright terms: Public domain | W3C validator |