MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndmnd Structured version   Visualization version   GIF version

Theorem efmndmnd 18054
Description: The monoid of endofunctions on a set 𝐴 is actually a monoid. (Contributed by AV, 31-Jan-2024.)
Hypothesis
Ref Expression
ielefmnd.g 𝐺 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
efmndmnd (𝐴𝑉𝐺 ∈ Mnd)

Proof of Theorem efmndmnd
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ielefmnd.g . . . 4 𝐺 = (EndoFMnd‘𝐴)
21efmndsgrp 18051 . . 3 𝐺 ∈ Smgrp
32a1i 11 . 2 (𝐴𝑉𝐺 ∈ Smgrp)
41ielefmnd 18052 . . 3 (𝐴𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺))
5 oveq1 7163 . . . . . . 7 (𝑖 = ( I ↾ 𝐴) → (𝑖(+g𝐺)𝑓) = (( I ↾ 𝐴)(+g𝐺)𝑓))
65eqeq1d 2823 . . . . . 6 (𝑖 = ( I ↾ 𝐴) → ((𝑖(+g𝐺)𝑓) = 𝑓 ↔ (( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓))
7 oveq2 7164 . . . . . . 7 (𝑖 = ( I ↾ 𝐴) → (𝑓(+g𝐺)𝑖) = (𝑓(+g𝐺)( I ↾ 𝐴)))
87eqeq1d 2823 . . . . . 6 (𝑖 = ( I ↾ 𝐴) → ((𝑓(+g𝐺)𝑖) = 𝑓 ↔ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓))
96, 8anbi12d 632 . . . . 5 (𝑖 = ( I ↾ 𝐴) → (((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓) ↔ ((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)))
109ralbidv 3197 . . . 4 (𝑖 = ( I ↾ 𝐴) → (∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓) ↔ ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)))
1110adantl 484 . . 3 ((𝐴𝑉𝑖 = ( I ↾ 𝐴)) → (∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓) ↔ ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)))
12 eqid 2821 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
131, 12efmndbasf 18040 . . . . . . 7 (𝑓 ∈ (Base‘𝐺) → 𝑓:𝐴𝐴)
1413adantl 484 . . . . . 6 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴𝐴)
15 fcoi2 6553 . . . . . . 7 (𝑓:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)
16 fcoi1 6552 . . . . . . 7 (𝑓:𝐴𝐴 → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)
1715, 16jca 514 . . . . . 6 (𝑓:𝐴𝐴 → ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓))
1814, 17syl 17 . . . . 5 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓))
19 eqid 2821 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
201, 12, 19efmndov 18046 . . . . . . . 8 ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
214, 20sylan 582 . . . . . . 7 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
2221eqeq1d 2823 . . . . . 6 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ↔ (( I ↾ 𝐴) ∘ 𝑓) = 𝑓))
234anim1ci 617 . . . . . . . 8 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)))
241, 12, 19efmndov 18046 . . . . . . . 8 ((𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴)))
2523, 24syl 17 . . . . . . 7 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴)))
2625eqeq1d 2823 . . . . . 6 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓 ↔ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓))
2722, 26anbi12d 632 . . . . 5 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓) ↔ ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)))
2818, 27mpbird 259 . . . 4 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓))
2928ralrimiva 3182 . . 3 (𝐴𝑉 → ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓))
304, 11, 29rspcedvd 3626 . 2 (𝐴𝑉 → ∃𝑖 ∈ (Base‘𝐺)∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓))
3112, 19ismnddef 17913 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑖 ∈ (Base‘𝐺)∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓)))
323, 30, 31sylanbrc 585 1 (𝐴𝑉𝐺 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139   I cid 5459  cres 5557  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  Smgrpcsgrp 17900  Mndcmnd 17911  EndoFMndcefmnd 18033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-tset 16584  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-efmnd 18034
This theorem is referenced by:  efmnd0nmnd  18055  submefmnd  18060  sursubmefmnd  18061  injsubmefmnd  18062  idressubmefmnd  18063  idresefmnd  18064  symgsubmefmndALT  18531  efmndtmd  22709
  Copyright terms: Public domain W3C validator