![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efmndmnd | Structured version Visualization version GIF version |
Description: The monoid of endofunctions on a set 𝐴 is actually a monoid. (Contributed by AV, 31-Jan-2024.) |
Ref | Expression |
---|---|
ielefmnd.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
Ref | Expression |
---|---|
efmndmnd | ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ielefmnd.g | . . . 4 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
2 | 1 | efmndsgrp 18696 | . . 3 ⊢ 𝐺 ∈ Smgrp |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Smgrp) |
4 | 1 | ielefmnd 18697 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) |
5 | oveq1 7364 | . . . . . . 7 ⊢ (𝑖 = ( I ↾ 𝐴) → (𝑖(+g‘𝐺)𝑓) = (( I ↾ 𝐴)(+g‘𝐺)𝑓)) | |
6 | 5 | eqeq1d 2738 | . . . . . 6 ⊢ (𝑖 = ( I ↾ 𝐴) → ((𝑖(+g‘𝐺)𝑓) = 𝑓 ↔ (( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓)) |
7 | oveq2 7365 | . . . . . . 7 ⊢ (𝑖 = ( I ↾ 𝐴) → (𝑓(+g‘𝐺)𝑖) = (𝑓(+g‘𝐺)( I ↾ 𝐴))) | |
8 | 7 | eqeq1d 2738 | . . . . . 6 ⊢ (𝑖 = ( I ↾ 𝐴) → ((𝑓(+g‘𝐺)𝑖) = 𝑓 ↔ (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓)) |
9 | 6, 8 | anbi12d 631 | . . . . 5 ⊢ (𝑖 = ( I ↾ 𝐴) → (((𝑖(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)𝑖) = 𝑓) ↔ ((( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓))) |
10 | 9 | ralbidv 3174 | . . . 4 ⊢ (𝑖 = ( I ↾ 𝐴) → (∀𝑓 ∈ (Base‘𝐺)((𝑖(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)𝑖) = 𝑓) ↔ ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓))) |
11 | 10 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑖 = ( I ↾ 𝐴)) → (∀𝑓 ∈ (Base‘𝐺)((𝑖(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)𝑖) = 𝑓) ↔ ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓))) |
12 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
13 | 1, 12 | efmndbasf 18685 | . . . . . . 7 ⊢ (𝑓 ∈ (Base‘𝐺) → 𝑓:𝐴⟶𝐴) |
14 | 13 | adantl 482 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴⟶𝐴) |
15 | fcoi2 6717 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓) | |
16 | fcoi1 6716 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐴 → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓) | |
17 | 15, 16 | jca 512 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐴 → ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)) |
18 | 14, 17 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)) |
19 | eqid 2736 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
20 | 1, 12, 19 | efmndov 18691 | . . . . . . . 8 ⊢ ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓)) |
21 | 4, 20 | sylan 580 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓)) |
22 | 21 | eqeq1d 2738 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓 ↔ (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)) |
23 | 4 | anim1ci 616 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺))) |
24 | 1, 12, 19 | efmndov 18691 | . . . . . . . 8 ⊢ ((𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴))) |
25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴))) |
26 | 25 | eqeq1d 2738 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓 ↔ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)) |
27 | 22, 26 | anbi12d 631 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (((( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓) ↔ ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓))) |
28 | 18, 27 | mpbird 256 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓)) |
29 | 28 | ralrimiva 3143 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓)) |
30 | 4, 11, 29 | rspcedvd 3583 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑖 ∈ (Base‘𝐺)∀𝑓 ∈ (Base‘𝐺)((𝑖(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)𝑖) = 𝑓)) |
31 | 12, 19 | ismnddef 18558 | . 2 ⊢ (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑖 ∈ (Base‘𝐺)∀𝑓 ∈ (Base‘𝐺)((𝑖(+g‘𝐺)𝑓) = 𝑓 ∧ (𝑓(+g‘𝐺)𝑖) = 𝑓))) |
32 | 3, 30, 31 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∃wrex 3073 I cid 5530 ↾ cres 5635 ∘ ccom 5637 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 +gcplusg 17133 Smgrpcsgrp 18545 Mndcmnd 18556 EndoFMndcefmnd 18678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-struct 17019 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-tset 17152 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-efmnd 18679 |
This theorem is referenced by: efmnd0nmnd 18700 submefmnd 18705 sursubmefmnd 18706 injsubmefmnd 18707 idressubmefmnd 18708 idresefmnd 18709 symgsubmefmndALT 19185 efmndtmd 23452 |
Copyright terms: Public domain | W3C validator |