MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndmnd Structured version   Visualization version   GIF version

Theorem efmndmnd 18699
Description: The monoid of endofunctions on a set 𝐴 is actually a monoid. (Contributed by AV, 31-Jan-2024.)
Hypothesis
Ref Expression
ielefmnd.g 𝐺 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
efmndmnd (𝐴𝑉𝐺 ∈ Mnd)

Proof of Theorem efmndmnd
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ielefmnd.g . . . 4 𝐺 = (EndoFMnd‘𝐴)
21efmndsgrp 18696 . . 3 𝐺 ∈ Smgrp
32a1i 11 . 2 (𝐴𝑉𝐺 ∈ Smgrp)
41ielefmnd 18697 . . 3 (𝐴𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺))
5 oveq1 7364 . . . . . . 7 (𝑖 = ( I ↾ 𝐴) → (𝑖(+g𝐺)𝑓) = (( I ↾ 𝐴)(+g𝐺)𝑓))
65eqeq1d 2738 . . . . . 6 (𝑖 = ( I ↾ 𝐴) → ((𝑖(+g𝐺)𝑓) = 𝑓 ↔ (( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓))
7 oveq2 7365 . . . . . . 7 (𝑖 = ( I ↾ 𝐴) → (𝑓(+g𝐺)𝑖) = (𝑓(+g𝐺)( I ↾ 𝐴)))
87eqeq1d 2738 . . . . . 6 (𝑖 = ( I ↾ 𝐴) → ((𝑓(+g𝐺)𝑖) = 𝑓 ↔ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓))
96, 8anbi12d 631 . . . . 5 (𝑖 = ( I ↾ 𝐴) → (((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓) ↔ ((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)))
109ralbidv 3174 . . . 4 (𝑖 = ( I ↾ 𝐴) → (∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓) ↔ ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)))
1110adantl 482 . . 3 ((𝐴𝑉𝑖 = ( I ↾ 𝐴)) → (∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓) ↔ ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)))
12 eqid 2736 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
131, 12efmndbasf 18685 . . . . . . 7 (𝑓 ∈ (Base‘𝐺) → 𝑓:𝐴𝐴)
1413adantl 482 . . . . . 6 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴𝐴)
15 fcoi2 6717 . . . . . . 7 (𝑓:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)
16 fcoi1 6716 . . . . . . 7 (𝑓:𝐴𝐴 → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)
1715, 16jca 512 . . . . . 6 (𝑓:𝐴𝐴 → ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓))
1814, 17syl 17 . . . . 5 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓))
19 eqid 2736 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
201, 12, 19efmndov 18691 . . . . . . . 8 ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
214, 20sylan 580 . . . . . . 7 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
2221eqeq1d 2738 . . . . . 6 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ↔ (( I ↾ 𝐴) ∘ 𝑓) = 𝑓))
234anim1ci 616 . . . . . . . 8 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)))
241, 12, 19efmndov 18691 . . . . . . . 8 ((𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴)))
2523, 24syl 17 . . . . . . 7 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴)))
2625eqeq1d 2738 . . . . . 6 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓 ↔ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓))
2722, 26anbi12d 631 . . . . 5 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓) ↔ ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)))
2818, 27mpbird 256 . . . 4 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓))
2928ralrimiva 3143 . . 3 (𝐴𝑉 → ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓))
304, 11, 29rspcedvd 3583 . 2 (𝐴𝑉 → ∃𝑖 ∈ (Base‘𝐺)∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓))
3112, 19ismnddef 18558 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑖 ∈ (Base‘𝐺)∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓)))
323, 30, 31sylanbrc 583 1 (𝐴𝑉𝐺 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073   I cid 5530  cres 5635  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  Smgrpcsgrp 18545  Mndcmnd 18556  EndoFMndcefmnd 18678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-tset 17152  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-efmnd 18679
This theorem is referenced by:  efmnd0nmnd  18700  submefmnd  18705  sursubmefmnd  18706  injsubmefmnd  18707  idressubmefmnd  18708  idresefmnd  18709  symgsubmefmndALT  19185  efmndtmd  23452
  Copyright terms: Public domain W3C validator