MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndmnd Structured version   Visualization version   GIF version

Theorem efmndmnd 18816
Description: The monoid of endofunctions on a set 𝐴 is actually a monoid. (Contributed by AV, 31-Jan-2024.)
Hypothesis
Ref Expression
ielefmnd.g 𝐺 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
efmndmnd (𝐴𝑉𝐺 ∈ Mnd)

Proof of Theorem efmndmnd
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ielefmnd.g . . . 4 𝐺 = (EndoFMnd‘𝐴)
21efmndsgrp 18813 . . 3 𝐺 ∈ Smgrp
32a1i 11 . 2 (𝐴𝑉𝐺 ∈ Smgrp)
41ielefmnd 18814 . . 3 (𝐴𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺))
5 oveq1 7394 . . . . . . 7 (𝑖 = ( I ↾ 𝐴) → (𝑖(+g𝐺)𝑓) = (( I ↾ 𝐴)(+g𝐺)𝑓))
65eqeq1d 2731 . . . . . 6 (𝑖 = ( I ↾ 𝐴) → ((𝑖(+g𝐺)𝑓) = 𝑓 ↔ (( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓))
7 oveq2 7395 . . . . . . 7 (𝑖 = ( I ↾ 𝐴) → (𝑓(+g𝐺)𝑖) = (𝑓(+g𝐺)( I ↾ 𝐴)))
87eqeq1d 2731 . . . . . 6 (𝑖 = ( I ↾ 𝐴) → ((𝑓(+g𝐺)𝑖) = 𝑓 ↔ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓))
96, 8anbi12d 632 . . . . 5 (𝑖 = ( I ↾ 𝐴) → (((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓) ↔ ((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)))
109ralbidv 3156 . . . 4 (𝑖 = ( I ↾ 𝐴) → (∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓) ↔ ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)))
1110adantl 481 . . 3 ((𝐴𝑉𝑖 = ( I ↾ 𝐴)) → (∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓) ↔ ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)))
12 eqid 2729 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
131, 12efmndbasf 18802 . . . . . . 7 (𝑓 ∈ (Base‘𝐺) → 𝑓:𝐴𝐴)
1413adantl 481 . . . . . 6 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴𝐴)
15 fcoi2 6735 . . . . . . 7 (𝑓:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)
16 fcoi1 6734 . . . . . . 7 (𝑓:𝐴𝐴 → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)
1715, 16jca 511 . . . . . 6 (𝑓:𝐴𝐴 → ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓))
1814, 17syl 17 . . . . 5 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓))
19 eqid 2729 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
201, 12, 19efmndov 18808 . . . . . . . 8 ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
214, 20sylan 580 . . . . . . 7 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
2221eqeq1d 2731 . . . . . 6 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ↔ (( I ↾ 𝐴) ∘ 𝑓) = 𝑓))
234anim1ci 616 . . . . . . . 8 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)))
241, 12, 19efmndov 18808 . . . . . . . 8 ((𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴)))
2523, 24syl 17 . . . . . . 7 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴)))
2625eqeq1d 2731 . . . . . 6 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓 ↔ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓))
2722, 26anbi12d 632 . . . . 5 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓) ↔ ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)))
2818, 27mpbird 257 . . . 4 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓))
2928ralrimiva 3125 . . 3 (𝐴𝑉 → ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓))
304, 11, 29rspcedvd 3590 . 2 (𝐴𝑉 → ∃𝑖 ∈ (Base‘𝐺)∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓))
3112, 19ismnddef 18663 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑖 ∈ (Base‘𝐺)∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓)))
323, 30, 31sylanbrc 583 1 (𝐴𝑉𝐺 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   I cid 5532  cres 5640  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Smgrpcsgrp 18645  Mndcmnd 18661  EndoFMndcefmnd 18795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-tset 17239  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-efmnd 18796
This theorem is referenced by:  efmnd0nmnd  18817  submefmnd  18822  sursubmefmnd  18823  injsubmefmnd  18824  idressubmefmnd  18825  idresefmnd  18826  symgsubmefmndALT  19333  efmndtmd  23988
  Copyright terms: Public domain W3C validator