MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndmnd Structured version   Visualization version   GIF version

Theorem efmndmnd 18046
Description: The monoid of endofunctions on a set 𝐴 is actually a monoid. (Contributed by AV, 31-Jan-2024.)
Hypothesis
Ref Expression
ielefmnd.g 𝐺 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
efmndmnd (𝐴𝑉𝐺 ∈ Mnd)

Proof of Theorem efmndmnd
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ielefmnd.g . . . 4 𝐺 = (EndoFMnd‘𝐴)
21efmndsgrp 18043 . . 3 𝐺 ∈ Smgrp
32a1i 11 . 2 (𝐴𝑉𝐺 ∈ Smgrp)
41ielefmnd 18044 . . 3 (𝐴𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺))
5 oveq1 7142 . . . . . . 7 (𝑖 = ( I ↾ 𝐴) → (𝑖(+g𝐺)𝑓) = (( I ↾ 𝐴)(+g𝐺)𝑓))
65eqeq1d 2800 . . . . . 6 (𝑖 = ( I ↾ 𝐴) → ((𝑖(+g𝐺)𝑓) = 𝑓 ↔ (( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓))
7 oveq2 7143 . . . . . . 7 (𝑖 = ( I ↾ 𝐴) → (𝑓(+g𝐺)𝑖) = (𝑓(+g𝐺)( I ↾ 𝐴)))
87eqeq1d 2800 . . . . . 6 (𝑖 = ( I ↾ 𝐴) → ((𝑓(+g𝐺)𝑖) = 𝑓 ↔ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓))
96, 8anbi12d 633 . . . . 5 (𝑖 = ( I ↾ 𝐴) → (((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓) ↔ ((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)))
109ralbidv 3162 . . . 4 (𝑖 = ( I ↾ 𝐴) → (∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓) ↔ ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)))
1110adantl 485 . . 3 ((𝐴𝑉𝑖 = ( I ↾ 𝐴)) → (∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓) ↔ ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)))
12 eqid 2798 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
131, 12efmndbasf 18032 . . . . . . 7 (𝑓 ∈ (Base‘𝐺) → 𝑓:𝐴𝐴)
1413adantl 485 . . . . . 6 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴𝐴)
15 fcoi2 6527 . . . . . . 7 (𝑓:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)
16 fcoi1 6526 . . . . . . 7 (𝑓:𝐴𝐴 → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)
1715, 16jca 515 . . . . . 6 (𝑓:𝐴𝐴 → ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓))
1814, 17syl 17 . . . . 5 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓))
19 eqid 2798 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
201, 12, 19efmndov 18038 . . . . . . . 8 ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
214, 20sylan 583 . . . . . . 7 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
2221eqeq1d 2800 . . . . . 6 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ↔ (( I ↾ 𝐴) ∘ 𝑓) = 𝑓))
234anim1ci 618 . . . . . . . 8 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)))
241, 12, 19efmndov 18038 . . . . . . . 8 ((𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴)))
2523, 24syl 17 . . . . . . 7 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴)))
2625eqeq1d 2800 . . . . . 6 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓 ↔ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓))
2722, 26anbi12d 633 . . . . 5 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓) ↔ ((( I ↾ 𝐴) ∘ 𝑓) = 𝑓 ∧ (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)))
2818, 27mpbird 260 . . . 4 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → ((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓))
2928ralrimiva 3149 . . 3 (𝐴𝑉 → ∀𝑓 ∈ (Base‘𝐺)((( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓))
304, 11, 29rspcedvd 3574 . 2 (𝐴𝑉 → ∃𝑖 ∈ (Base‘𝐺)∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓))
3112, 19ismnddef 17905 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑖 ∈ (Base‘𝐺)∀𝑓 ∈ (Base‘𝐺)((𝑖(+g𝐺)𝑓) = 𝑓 ∧ (𝑓(+g𝐺)𝑖) = 𝑓)))
323, 30, 31sylanbrc 586 1 (𝐴𝑉𝐺 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107   I cid 5424  cres 5521  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Smgrpcsgrp 17892  Mndcmnd 17903  EndoFMndcefmnd 18025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-tset 16576  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-efmnd 18026
This theorem is referenced by:  efmnd0nmnd  18047  submefmnd  18052  sursubmefmnd  18053  injsubmefmnd  18054  idressubmefmnd  18055  idresefmnd  18056  symgsubmefmndALT  18523  efmndtmd  22706
  Copyright terms: Public domain W3C validator