MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnllycmp Structured version   Visualization version   GIF version

Theorem cnllycmp 24855
Description: The topology on the complex numbers is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypothesis
Ref Expression
cnllycmp.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
cnllycmp 𝐽 ∈ 𝑛-Locally Comp

Proof of Theorem cnllycmp
Dummy variables 𝑠 𝑟 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnllycmp.1 . . 3 𝐽 = (TopOpen‘ℂfld)
21cnfldtop 24671 . 2 𝐽 ∈ Top
3 cnxmet 24660 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
41cnfldtopn 24669 . . . . . 6 𝐽 = (MetOpen‘(abs ∘ − ))
54mopni2 24381 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥𝐽𝑦𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)
63, 5mp3an1 1450 . . . 4 ((𝑥𝐽𝑦𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)
72a1i 11 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝐽 ∈ Top)
83a1i 11 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
9 elssuni 4901 . . . . . . . . . . . 12 (𝑥𝐽𝑥 𝐽)
109ad2antrr 726 . . . . . . . . . . 11 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 𝐽)
111cnfldtopon 24670 . . . . . . . . . . . 12 𝐽 ∈ (TopOn‘ℂ)
1211toponunii 22803 . . . . . . . . . . 11 ℂ = 𝐽
1310, 12sseqtrrdi 3988 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 ⊆ ℂ)
14 simplr 768 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦𝑥)
1513, 14sseldd 3947 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ ℂ)
16 rphalfcl 12980 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
1716ad2antrl 728 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑟 / 2) ∈ ℝ+)
1817rpxrd 12996 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑟 / 2) ∈ ℝ*)
194blopn 24388 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ 𝐽)
208, 15, 18, 19syl3anc 1373 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ 𝐽)
21 blcntr 24301 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))
228, 15, 17, 21syl3anc 1373 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))
23 opnneip 23006 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ 𝐽𝑦 ∈ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ ((nei‘𝐽)‘{𝑦}))
247, 20, 22, 23syl3anc 1373 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ ((nei‘𝐽)‘{𝑦}))
25 blssm 24306 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ℂ)
268, 15, 18, 25syl3anc 1373 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ℂ)
2712sscls 22943 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ℂ) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))))
287, 26, 27syl2anc 584 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))))
29 rpxr 12961 . . . . . . . . . . 11 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
3029ad2antrl 728 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑟 ∈ ℝ*)
31 rphalflt 12982 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
3231ad2antrl 728 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑟 / 2) < 𝑟)
334blsscls 24395 . . . . . . . . . 10 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ) ∧ ((𝑟 / 2) ∈ ℝ*𝑟 ∈ ℝ* ∧ (𝑟 / 2) < 𝑟)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ (𝑦(ball‘(abs ∘ − ))𝑟))
348, 15, 18, 30, 32, 33syl23anc 1379 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ (𝑦(ball‘(abs ∘ − ))𝑟))
35 simprr 772 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)
3634, 35sstrd 3957 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ 𝑥)
3736, 13sstrd 3957 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ ℂ)
3812ssnei2 23003 . . . . . . 7 (((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ ((nei‘𝐽)‘{𝑦})) ∧ ((𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∧ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ ℂ)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ ((nei‘𝐽)‘{𝑦}))
397, 24, 28, 37, 38syl22anc 838 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ ((nei‘𝐽)‘{𝑦}))
40 vex 3451 . . . . . . . 8 𝑥 ∈ V
4140elpw2 5289 . . . . . . 7 (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ 𝒫 𝑥 ↔ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ 𝑥)
4236, 41sylibr 234 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ 𝒫 𝑥)
4339, 42elind 4163 . . . . 5 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥))
4412clscld 22934 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ℂ) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽))
457, 26, 44syl2anc 584 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽))
4615abscld 15405 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (abs‘𝑦) ∈ ℝ)
4717rpred 12995 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑟 / 2) ∈ ℝ)
4846, 47readdcld 11203 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((abs‘𝑦) + (𝑟 / 2)) ∈ ℝ)
49 eqid 2729 . . . . . . . . . 10 {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} = {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)}
504, 49blcls 24394 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ*) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)})
518, 15, 18, 50syl3anc 1373 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)})
52 simpr 484 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
5315adantr 480 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → 𝑦 ∈ ℂ)
5452, 53abs2difd 15426 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (abs‘(𝑧𝑦)))
5552abscld 15405 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘𝑧) ∈ ℝ)
5646adantr 480 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘𝑦) ∈ ℝ)
5755, 56resubcld 11606 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘𝑧) − (abs‘𝑦)) ∈ ℝ)
5852, 53subcld 11533 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (𝑧𝑦) ∈ ℂ)
5958abscld 15405 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧𝑦)) ∈ ℝ)
6047adantr 480 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (𝑟 / 2) ∈ ℝ)
61 letr 11268 . . . . . . . . . . . . 13 ((((abs‘𝑧) − (abs‘𝑦)) ∈ ℝ ∧ (abs‘(𝑧𝑦)) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) → ((((abs‘𝑧) − (abs‘𝑦)) ≤ (abs‘(𝑧𝑦)) ∧ (abs‘(𝑧𝑦)) ≤ (𝑟 / 2)) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2)))
6257, 59, 60, 61syl3anc 1373 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((((abs‘𝑧) − (abs‘𝑦)) ≤ (abs‘(𝑧𝑦)) ∧ (abs‘(𝑧𝑦)) ≤ (𝑟 / 2)) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2)))
6354, 62mpand 695 . . . . . . . . . . 11 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧𝑦)) ≤ (𝑟 / 2) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2)))
6452, 53abssubd 15422 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
65 eqid 2729 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
6665cnmetdval 24658 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
6715, 66sylan 580 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
6864, 67eqtr4d 2767 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧𝑦)) = (𝑦(abs ∘ − )𝑧))
6968breq1d 5117 . . . . . . . . . . 11 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧𝑦)) ≤ (𝑟 / 2) ↔ (𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2)))
7055, 56, 60lesubadd2d 11777 . . . . . . . . . . 11 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2) ↔ (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
7163, 69, 703imtr3d 293 . . . . . . . . . 10 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2) → (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
7271ralrimiva 3125 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∀𝑧 ∈ ℂ ((𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2) → (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
73 oveq2 7395 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑦(abs ∘ − )𝑤) = (𝑦(abs ∘ − )𝑧))
7473breq1d 5117 . . . . . . . . . 10 (𝑤 = 𝑧 → ((𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2) ↔ (𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2)))
7574ralrab 3665 . . . . . . . . 9 (∀𝑧 ∈ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)) ↔ ∀𝑧 ∈ ℂ ((𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2) → (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
7672, 75sylibr 234 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)))
77 ssralv 4015 . . . . . . . 8 (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} → (∀𝑧 ∈ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)) → ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
7851, 76, 77sylc 65 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)))
79 brralrspcev 5167 . . . . . . 7 ((((abs‘𝑦) + (𝑟 / 2)) ∈ ℝ ∧ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))) → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠)
8048, 78, 79syl2anc 584 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠)
81 eqid 2729 . . . . . . . 8 (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) = (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))))
821, 81cnheibor 24854 . . . . . . 7 (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ ℂ → ((𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp ↔ (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠)))
8337, 82syl 17 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp ↔ (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠)))
8445, 80, 83mpbir2and 713 . . . . 5 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp)
85 oveq2 7395 . . . . . . 7 (𝑢 = ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) → (𝐽t 𝑢) = (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))))
8685eleq1d 2813 . . . . . 6 (𝑢 = ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) → ((𝐽t 𝑢) ∈ Comp ↔ (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp))
8786rspcev 3588 . . . . 5 ((((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp)
8843, 84, 87syl2anc 584 . . . 4 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp)
896, 88rexlimddv 3140 . . 3 ((𝑥𝐽𝑦𝑥) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp)
9089rgen2 3177 . 2 𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp
91 isnlly 23356 . 2 (𝐽 ∈ 𝑛-Locally Comp ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp))
922, 90, 91mpbir2an 711 1 𝐽 ∈ 𝑛-Locally Comp
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  cin 3913  wss 3914  𝒫 cpw 4563  {csn 4589   cuni 4871   class class class wbr 5107  ccom 5642  cfv 6511  (class class class)co 7387  cc 11066  cr 11067   + caddc 11071  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  +crp 12951  abscabs 15200  t crest 17383  TopOpenctopn 17384  ∞Metcxmet 21249  ballcbl 21251  fldccnfld 21264  Topctop 22780  Clsdccld 22903  clsccl 22905  neicnei 22984  Compccmp 23273  𝑛-Locally cnlly 23352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-nlly 23354  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771
This theorem is referenced by:  rellycmp  24856
  Copyright terms: Public domain W3C validator