MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnllycmp Structured version   Visualization version   GIF version

Theorem cnllycmp 24882
Description: The topology on the complex numbers is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypothesis
Ref Expression
cnllycmp.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
cnllycmp 𝐽 ∈ 𝑛-Locally Comp

Proof of Theorem cnllycmp
Dummy variables 𝑠 𝑟 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnllycmp.1 . . 3 𝐽 = (TopOpen‘ℂfld)
21cnfldtop 24698 . 2 𝐽 ∈ Top
3 cnxmet 24687 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
41cnfldtopn 24696 . . . . . 6 𝐽 = (MetOpen‘(abs ∘ − ))
54mopni2 24408 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥𝐽𝑦𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)
63, 5mp3an1 1450 . . . 4 ((𝑥𝐽𝑦𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)
72a1i 11 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝐽 ∈ Top)
83a1i 11 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
9 elssuni 4887 . . . . . . . . . . . 12 (𝑥𝐽𝑥 𝐽)
109ad2antrr 726 . . . . . . . . . . 11 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 𝐽)
111cnfldtopon 24697 . . . . . . . . . . . 12 𝐽 ∈ (TopOn‘ℂ)
1211toponunii 22831 . . . . . . . . . . 11 ℂ = 𝐽
1310, 12sseqtrrdi 3971 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 ⊆ ℂ)
14 simplr 768 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦𝑥)
1513, 14sseldd 3930 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ ℂ)
16 rphalfcl 12919 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
1716ad2antrl 728 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑟 / 2) ∈ ℝ+)
1817rpxrd 12935 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑟 / 2) ∈ ℝ*)
194blopn 24415 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ 𝐽)
208, 15, 18, 19syl3anc 1373 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ 𝐽)
21 blcntr 24328 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))
228, 15, 17, 21syl3anc 1373 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))
23 opnneip 23034 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ 𝐽𝑦 ∈ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ ((nei‘𝐽)‘{𝑦}))
247, 20, 22, 23syl3anc 1373 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ ((nei‘𝐽)‘{𝑦}))
25 blssm 24333 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ℂ)
268, 15, 18, 25syl3anc 1373 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ℂ)
2712sscls 22971 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ℂ) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))))
287, 26, 27syl2anc 584 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))))
29 rpxr 12900 . . . . . . . . . . 11 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
3029ad2antrl 728 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑟 ∈ ℝ*)
31 rphalflt 12921 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
3231ad2antrl 728 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑟 / 2) < 𝑟)
334blsscls 24422 . . . . . . . . . 10 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ) ∧ ((𝑟 / 2) ∈ ℝ*𝑟 ∈ ℝ* ∧ (𝑟 / 2) < 𝑟)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ (𝑦(ball‘(abs ∘ − ))𝑟))
348, 15, 18, 30, 32, 33syl23anc 1379 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ (𝑦(ball‘(abs ∘ − ))𝑟))
35 simprr 772 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)
3634, 35sstrd 3940 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ 𝑥)
3736, 13sstrd 3940 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ ℂ)
3812ssnei2 23031 . . . . . . 7 (((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ ((nei‘𝐽)‘{𝑦})) ∧ ((𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∧ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ ℂ)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ ((nei‘𝐽)‘{𝑦}))
397, 24, 28, 37, 38syl22anc 838 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ ((nei‘𝐽)‘{𝑦}))
40 vex 3440 . . . . . . . 8 𝑥 ∈ V
4140elpw2 5270 . . . . . . 7 (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ 𝒫 𝑥 ↔ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ 𝑥)
4236, 41sylibr 234 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ 𝒫 𝑥)
4339, 42elind 4147 . . . . 5 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥))
4412clscld 22962 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ℂ) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽))
457, 26, 44syl2anc 584 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽))
4615abscld 15346 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (abs‘𝑦) ∈ ℝ)
4717rpred 12934 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑟 / 2) ∈ ℝ)
4846, 47readdcld 11141 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((abs‘𝑦) + (𝑟 / 2)) ∈ ℝ)
49 eqid 2731 . . . . . . . . . 10 {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} = {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)}
504, 49blcls 24421 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ*) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)})
518, 15, 18, 50syl3anc 1373 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)})
52 simpr 484 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
5315adantr 480 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → 𝑦 ∈ ℂ)
5452, 53abs2difd 15367 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (abs‘(𝑧𝑦)))
5552abscld 15346 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘𝑧) ∈ ℝ)
5646adantr 480 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘𝑦) ∈ ℝ)
5755, 56resubcld 11545 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘𝑧) − (abs‘𝑦)) ∈ ℝ)
5852, 53subcld 11472 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (𝑧𝑦) ∈ ℂ)
5958abscld 15346 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧𝑦)) ∈ ℝ)
6047adantr 480 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (𝑟 / 2) ∈ ℝ)
61 letr 11207 . . . . . . . . . . . . 13 ((((abs‘𝑧) − (abs‘𝑦)) ∈ ℝ ∧ (abs‘(𝑧𝑦)) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) → ((((abs‘𝑧) − (abs‘𝑦)) ≤ (abs‘(𝑧𝑦)) ∧ (abs‘(𝑧𝑦)) ≤ (𝑟 / 2)) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2)))
6257, 59, 60, 61syl3anc 1373 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((((abs‘𝑧) − (abs‘𝑦)) ≤ (abs‘(𝑧𝑦)) ∧ (abs‘(𝑧𝑦)) ≤ (𝑟 / 2)) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2)))
6354, 62mpand 695 . . . . . . . . . . 11 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧𝑦)) ≤ (𝑟 / 2) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2)))
6452, 53abssubd 15363 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
65 eqid 2731 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
6665cnmetdval 24685 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
6715, 66sylan 580 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
6864, 67eqtr4d 2769 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧𝑦)) = (𝑦(abs ∘ − )𝑧))
6968breq1d 5099 . . . . . . . . . . 11 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧𝑦)) ≤ (𝑟 / 2) ↔ (𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2)))
7055, 56, 60lesubadd2d 11716 . . . . . . . . . . 11 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2) ↔ (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
7163, 69, 703imtr3d 293 . . . . . . . . . 10 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2) → (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
7271ralrimiva 3124 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∀𝑧 ∈ ℂ ((𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2) → (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
73 oveq2 7354 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑦(abs ∘ − )𝑤) = (𝑦(abs ∘ − )𝑧))
7473breq1d 5099 . . . . . . . . . 10 (𝑤 = 𝑧 → ((𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2) ↔ (𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2)))
7574ralrab 3648 . . . . . . . . 9 (∀𝑧 ∈ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)) ↔ ∀𝑧 ∈ ℂ ((𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2) → (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
7672, 75sylibr 234 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)))
77 ssralv 3998 . . . . . . . 8 (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} → (∀𝑧 ∈ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)) → ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
7851, 76, 77sylc 65 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)))
79 brralrspcev 5149 . . . . . . 7 ((((abs‘𝑦) + (𝑟 / 2)) ∈ ℝ ∧ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))) → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠)
8048, 78, 79syl2anc 584 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠)
81 eqid 2731 . . . . . . . 8 (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) = (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))))
821, 81cnheibor 24881 . . . . . . 7 (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ ℂ → ((𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp ↔ (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠)))
8337, 82syl 17 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp ↔ (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠)))
8445, 80, 83mpbir2and 713 . . . . 5 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp)
85 oveq2 7354 . . . . . . 7 (𝑢 = ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) → (𝐽t 𝑢) = (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))))
8685eleq1d 2816 . . . . . 6 (𝑢 = ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) → ((𝐽t 𝑢) ∈ Comp ↔ (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp))
8786rspcev 3572 . . . . 5 ((((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp)
8843, 84, 87syl2anc 584 . . . 4 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp)
896, 88rexlimddv 3139 . . 3 ((𝑥𝐽𝑦𝑥) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp)
9089rgen2 3172 . 2 𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp
91 isnlly 23384 . 2 (𝐽 ∈ 𝑛-Locally Comp ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp))
922, 90, 91mpbir2an 711 1 𝐽 ∈ 𝑛-Locally Comp
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  cin 3896  wss 3897  𝒫 cpw 4547  {csn 4573   cuni 4856   class class class wbr 5089  ccom 5618  cfv 6481  (class class class)co 7346  cc 11004  cr 11005   + caddc 11009  *cxr 11145   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  2c2 12180  +crp 12890  abscabs 15141  t crest 17324  TopOpenctopn 17325  ∞Metcxmet 21276  ballcbl 21278  fldccnfld 21291  Topctop 22808  Clsdccld 22931  clsccl 22933  neicnei 23012  Compccmp 23301  𝑛-Locally cnlly 23380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-cls 22936  df-nei 23013  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-nlly 23382  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798
This theorem is referenced by:  rellycmp  24883
  Copyright terms: Public domain W3C validator