MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnllycmp Structured version   Visualization version   GIF version

Theorem cnllycmp 24025
Description: The topology on the complex numbers is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypothesis
Ref Expression
cnllycmp.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
cnllycmp 𝐽 ∈ 𝑛-Locally Comp

Proof of Theorem cnllycmp
Dummy variables 𝑠 𝑟 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnllycmp.1 . . 3 𝐽 = (TopOpen‘ℂfld)
21cnfldtop 23853 . 2 𝐽 ∈ Top
3 cnxmet 23842 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
41cnfldtopn 23851 . . . . . 6 𝐽 = (MetOpen‘(abs ∘ − ))
54mopni2 23555 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥𝐽𝑦𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)
63, 5mp3an1 1446 . . . 4 ((𝑥𝐽𝑦𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)
72a1i 11 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝐽 ∈ Top)
83a1i 11 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
9 elssuni 4868 . . . . . . . . . . . 12 (𝑥𝐽𝑥 𝐽)
109ad2antrr 722 . . . . . . . . . . 11 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 𝐽)
111cnfldtopon 23852 . . . . . . . . . . . 12 𝐽 ∈ (TopOn‘ℂ)
1211toponunii 21973 . . . . . . . . . . 11 ℂ = 𝐽
1310, 12sseqtrrdi 3968 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 ⊆ ℂ)
14 simplr 765 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦𝑥)
1513, 14sseldd 3918 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ ℂ)
16 rphalfcl 12686 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
1716ad2antrl 724 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑟 / 2) ∈ ℝ+)
1817rpxrd 12702 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑟 / 2) ∈ ℝ*)
194blopn 23562 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ 𝐽)
208, 15, 18, 19syl3anc 1369 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ 𝐽)
21 blcntr 23474 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))
228, 15, 17, 21syl3anc 1369 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))
23 opnneip 22178 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ 𝐽𝑦 ∈ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ ((nei‘𝐽)‘{𝑦}))
247, 20, 22, 23syl3anc 1369 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ ((nei‘𝐽)‘{𝑦}))
25 blssm 23479 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ℂ)
268, 15, 18, 25syl3anc 1369 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ℂ)
2712sscls 22115 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ℂ) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))))
287, 26, 27syl2anc 583 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))))
29 rpxr 12668 . . . . . . . . . . 11 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
3029ad2antrl 724 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑟 ∈ ℝ*)
31 rphalflt 12688 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
3231ad2antrl 724 . . . . . . . . . 10 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑟 / 2) < 𝑟)
334blsscls 23569 . . . . . . . . . 10 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ) ∧ ((𝑟 / 2) ∈ ℝ*𝑟 ∈ ℝ* ∧ (𝑟 / 2) < 𝑟)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ (𝑦(ball‘(abs ∘ − ))𝑟))
348, 15, 18, 30, 32, 33syl23anc 1375 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ (𝑦(ball‘(abs ∘ − ))𝑟))
35 simprr 769 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)
3634, 35sstrd 3927 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ 𝑥)
3736, 13sstrd 3927 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ ℂ)
3812ssnei2 22175 . . . . . . 7 (((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ ((nei‘𝐽)‘{𝑦})) ∧ ((𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∧ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ ℂ)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ ((nei‘𝐽)‘{𝑦}))
397, 24, 28, 37, 38syl22anc 835 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ ((nei‘𝐽)‘{𝑦}))
40 vex 3426 . . . . . . . 8 𝑥 ∈ V
4140elpw2 5264 . . . . . . 7 (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ 𝒫 𝑥 ↔ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ 𝑥)
4236, 41sylibr 233 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ 𝒫 𝑥)
4339, 42elind 4124 . . . . 5 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥))
4412clscld 22106 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ℂ) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽))
457, 26, 44syl2anc 583 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽))
4615abscld 15076 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (abs‘𝑦) ∈ ℝ)
4717rpred 12701 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑟 / 2) ∈ ℝ)
4846, 47readdcld 10935 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((abs‘𝑦) + (𝑟 / 2)) ∈ ℝ)
49 eqid 2738 . . . . . . . . . 10 {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} = {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)}
504, 49blcls 23568 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ*) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)})
518, 15, 18, 50syl3anc 1369 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)})
52 simpr 484 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
5315adantr 480 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → 𝑦 ∈ ℂ)
5452, 53abs2difd 15097 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (abs‘(𝑧𝑦)))
5552abscld 15076 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘𝑧) ∈ ℝ)
5646adantr 480 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘𝑦) ∈ ℝ)
5755, 56resubcld 11333 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘𝑧) − (abs‘𝑦)) ∈ ℝ)
5852, 53subcld 11262 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (𝑧𝑦) ∈ ℂ)
5958abscld 15076 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧𝑦)) ∈ ℝ)
6047adantr 480 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (𝑟 / 2) ∈ ℝ)
61 letr 10999 . . . . . . . . . . . . 13 ((((abs‘𝑧) − (abs‘𝑦)) ∈ ℝ ∧ (abs‘(𝑧𝑦)) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) → ((((abs‘𝑧) − (abs‘𝑦)) ≤ (abs‘(𝑧𝑦)) ∧ (abs‘(𝑧𝑦)) ≤ (𝑟 / 2)) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2)))
6257, 59, 60, 61syl3anc 1369 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((((abs‘𝑧) − (abs‘𝑦)) ≤ (abs‘(𝑧𝑦)) ∧ (abs‘(𝑧𝑦)) ≤ (𝑟 / 2)) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2)))
6354, 62mpand 691 . . . . . . . . . . 11 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧𝑦)) ≤ (𝑟 / 2) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2)))
6452, 53abssubd 15093 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
65 eqid 2738 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
6665cnmetdval 23840 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
6715, 66sylan 579 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
6864, 67eqtr4d 2781 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧𝑦)) = (𝑦(abs ∘ − )𝑧))
6968breq1d 5080 . . . . . . . . . . 11 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧𝑦)) ≤ (𝑟 / 2) ↔ (𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2)))
7055, 56, 60lesubadd2d 11504 . . . . . . . . . . 11 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2) ↔ (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
7163, 69, 703imtr3d 292 . . . . . . . . . 10 ((((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2) → (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
7271ralrimiva 3107 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∀𝑧 ∈ ℂ ((𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2) → (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
73 oveq2 7263 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑦(abs ∘ − )𝑤) = (𝑦(abs ∘ − )𝑧))
7473breq1d 5080 . . . . . . . . . 10 (𝑤 = 𝑧 → ((𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2) ↔ (𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2)))
7574ralrab 3623 . . . . . . . . 9 (∀𝑧 ∈ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)) ↔ ∀𝑧 ∈ ℂ ((𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2) → (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
7672, 75sylibr 233 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)))
77 ssralv 3983 . . . . . . . 8 (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} → (∀𝑧 ∈ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)) → ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))))
7851, 76, 77sylc 65 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)))
79 brralrspcev 5130 . . . . . . 7 ((((abs‘𝑦) + (𝑟 / 2)) ∈ ℝ ∧ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))) → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠)
8048, 78, 79syl2anc 583 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠)
81 eqid 2738 . . . . . . . 8 (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) = (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))))
821, 81cnheibor 24024 . . . . . . 7 (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ ℂ → ((𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp ↔ (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠)))
8337, 82syl 17 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ((𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp ↔ (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠)))
8445, 80, 83mpbir2and 709 . . . . 5 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp)
85 oveq2 7263 . . . . . . 7 (𝑢 = ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) → (𝐽t 𝑢) = (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))))
8685eleq1d 2823 . . . . . 6 (𝑢 = ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) → ((𝐽t 𝑢) ∈ Comp ↔ (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp))
8786rspcev 3552 . . . . 5 ((((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝐽t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp)
8843, 84, 87syl2anc 583 . . . 4 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp)
896, 88rexlimddv 3219 . . 3 ((𝑥𝐽𝑦𝑥) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp)
9089rgen2 3126 . 2 𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp
91 isnlly 22528 . 2 (𝐽 ∈ 𝑛-Locally Comp ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ Comp))
922, 90, 91mpbir2an 707 1 𝐽 ∈ 𝑛-Locally Comp
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  cin 3882  wss 3883  𝒫 cpw 4530  {csn 4558   cuni 4836   class class class wbr 5070  ccom 5584  cfv 6418  (class class class)co 7255  cc 10800  cr 10801   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  +crp 12659  abscabs 14873  t crest 17048  TopOpenctopn 17049  ∞Metcxmet 20495  ballcbl 20497  fldccnfld 20510  Topctop 21950  Clsdccld 22075  clsccl 22077  neicnei 22156  Compccmp 22445  𝑛-Locally cnlly 22524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-nlly 22526  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947
This theorem is referenced by:  rellycmp  24026
  Copyright terms: Public domain W3C validator