| Step | Hyp | Ref
| Expression |
| 1 | | cnllycmp.1 |
. . 3
⊢ 𝐽 =
(TopOpen‘ℂfld) |
| 2 | 1 | cnfldtop 24727 |
. 2
⊢ 𝐽 ∈ Top |
| 3 | | cnxmet 24716 |
. . . . 5
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
| 4 | 1 | cnfldtopn 24725 |
. . . . . 6
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) |
| 5 | 4 | mopni2 24437 |
. . . . 5
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥) |
| 6 | 3, 5 | mp3an1 1450 |
. . . 4
⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥) |
| 7 | 2 | a1i 11 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → 𝐽 ∈ Top) |
| 8 | 3 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → (abs ∘ − )
∈ (∞Met‘ℂ)) |
| 9 | | elssuni 4918 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) |
| 10 | 9 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → 𝑥 ⊆ ∪ 𝐽) |
| 11 | 1 | cnfldtopon 24726 |
. . . . . . . . . . . 12
⊢ 𝐽 ∈
(TopOn‘ℂ) |
| 12 | 11 | toponunii 22859 |
. . . . . . . . . . 11
⊢ ℂ =
∪ 𝐽 |
| 13 | 10, 12 | sseqtrrdi 4005 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → 𝑥 ⊆ ℂ) |
| 14 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → 𝑦 ∈ 𝑥) |
| 15 | 13, 14 | sseldd 3964 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → 𝑦 ∈ ℂ) |
| 16 | | rphalfcl 13041 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ ℝ+
→ (𝑟 / 2) ∈
ℝ+) |
| 17 | 16 | ad2antrl 728 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → (𝑟 / 2) ∈
ℝ+) |
| 18 | 17 | rpxrd 13057 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → (𝑟 / 2) ∈
ℝ*) |
| 19 | 4 | blopn 24444 |
. . . . . . . . 9
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ*) →
(𝑦(ball‘(abs ∘
− ))(𝑟 / 2)) ∈
𝐽) |
| 20 | 8, 15, 18, 19 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ 𝐽) |
| 21 | | blcntr 24357 |
. . . . . . . . 9
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ+) →
𝑦 ∈ (𝑦(ball‘(abs ∘ −
))(𝑟 /
2))) |
| 22 | 8, 15, 17, 21 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) |
| 23 | | opnneip 23062 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ −
))(𝑟 / 2)) ∈ 𝐽 ∧ 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) → (𝑦(ball‘(abs ∘ −
))(𝑟 / 2)) ∈
((nei‘𝐽)‘{𝑦})) |
| 24 | 7, 20, 22, 23 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ∈ ((nei‘𝐽)‘{𝑦})) |
| 25 | | blssm 24362 |
. . . . . . . . 9
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ*) →
(𝑦(ball‘(abs ∘
− ))(𝑟 / 2)) ⊆
ℂ) |
| 26 | 8, 15, 18, 25 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆
ℂ) |
| 27 | 12 | sscls 22999 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ −
))(𝑟 / 2)) ⊆ ℂ)
→ (𝑦(ball‘(abs
∘ − ))(𝑟 / 2))
⊆ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) |
| 28 | 7, 26, 27 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) |
| 29 | | rpxr 13023 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
| 30 | 29 | ad2antrl 728 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → 𝑟 ∈ ℝ*) |
| 31 | | rphalflt 13043 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ ℝ+
→ (𝑟 / 2) < 𝑟) |
| 32 | 31 | ad2antrl 728 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → (𝑟 / 2) < 𝑟) |
| 33 | 4 | blsscls 24451 |
. . . . . . . . . 10
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ) ∧ ((𝑟 / 2) ∈ ℝ* ∧ 𝑟 ∈ ℝ*
∧ (𝑟 / 2) < 𝑟)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ (𝑦(ball‘(abs ∘ −
))𝑟)) |
| 34 | 8, 15, 18, 30, 32, 33 | syl23anc 1379 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ (𝑦(ball‘(abs ∘ −
))𝑟)) |
| 35 | | simprr 772 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) |
| 36 | 34, 35 | sstrd 3974 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ 𝑥) |
| 37 | 36, 13 | sstrd 3974 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆
ℂ) |
| 38 | 12 | ssnei2 23059 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ −
))(𝑟 / 2)) ∈
((nei‘𝐽)‘{𝑦})) ∧ ((𝑦(ball‘(abs ∘ − ))(𝑟 / 2)) ⊆ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∧ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ ℂ)) →
((cls‘𝐽)‘(𝑦(ball‘(abs ∘ −
))(𝑟 / 2))) ∈
((nei‘𝐽)‘{𝑦})) |
| 39 | 7, 24, 28, 37, 38 | syl22anc 838 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ ((nei‘𝐽)‘{𝑦})) |
| 40 | | vex 3468 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 41 | 40 | elpw2 5309 |
. . . . . . 7
⊢
(((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ 𝒫 𝑥 ↔ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ 𝑥) |
| 42 | 36, 41 | sylibr 234 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ 𝒫 𝑥) |
| 43 | 39, 42 | elind 4180 |
. . . . 5
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈
(((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)) |
| 44 | 12 | clscld 22990 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑦(ball‘(abs ∘ −
))(𝑟 / 2)) ⊆ ℂ)
→ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽)) |
| 45 | 7, 26, 44 | syl2anc 584 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽)) |
| 46 | 15 | abscld 15460 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → (abs‘𝑦) ∈
ℝ) |
| 47 | 17 | rpred 13056 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → (𝑟 / 2) ∈ ℝ) |
| 48 | 46, 47 | readdcld 11269 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ((abs‘𝑦) + (𝑟 / 2)) ∈ ℝ) |
| 49 | | eqid 2736 |
. . . . . . . . . 10
⊢ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} = {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} |
| 50 | 4, 49 | blcls 24450 |
. . . . . . . . 9
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ (𝑟 / 2) ∈ ℝ*) →
((cls‘𝐽)‘(𝑦(ball‘(abs ∘ −
))(𝑟 / 2))) ⊆ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)}) |
| 51 | 8, 15, 18, 50 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)}) |
| 52 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) |
| 53 | 15 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → 𝑦 ∈ ℂ) |
| 54 | 52, 53 | abs2difd 15481 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (abs‘(𝑧 − 𝑦))) |
| 55 | 52 | abscld 15460 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘𝑧) ∈
ℝ) |
| 56 | 46 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘𝑦) ∈
ℝ) |
| 57 | 55, 56 | resubcld 11670 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘𝑧) − (abs‘𝑦)) ∈
ℝ) |
| 58 | 52, 53 | subcld 11599 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (𝑧 − 𝑦) ∈ ℂ) |
| 59 | 58 | abscld 15460 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧 − 𝑦)) ∈ ℝ) |
| 60 | 47 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (𝑟 / 2) ∈ ℝ) |
| 61 | | letr 11334 |
. . . . . . . . . . . . 13
⊢
((((abs‘𝑧)
− (abs‘𝑦))
∈ ℝ ∧ (abs‘(𝑧 − 𝑦)) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) →
((((abs‘𝑧) −
(abs‘𝑦)) ≤
(abs‘(𝑧 − 𝑦)) ∧ (abs‘(𝑧 − 𝑦)) ≤ (𝑟 / 2)) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2))) |
| 62 | 57, 59, 60, 61 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((((abs‘𝑧) − (abs‘𝑦)) ≤ (abs‘(𝑧 − 𝑦)) ∧ (abs‘(𝑧 − 𝑦)) ≤ (𝑟 / 2)) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2))) |
| 63 | 54, 62 | mpand 695 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧 − 𝑦)) ≤ (𝑟 / 2) → ((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2))) |
| 64 | 52, 53 | abssubd 15477 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧 − 𝑦)) = (abs‘(𝑦 − 𝑧))) |
| 65 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢ (abs
∘ − ) = (abs ∘ − ) |
| 66 | 65 | cnmetdval 24714 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦 − 𝑧))) |
| 67 | 15, 66 | sylan 580 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦 − 𝑧))) |
| 68 | 64, 67 | eqtr4d 2774 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧 − 𝑦)) = (𝑦(abs ∘ − )𝑧)) |
| 69 | 68 | breq1d 5134 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧 − 𝑦)) ≤ (𝑟 / 2) ↔ (𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2))) |
| 70 | 55, 56, 60 | lesubadd2d 11841 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → (((abs‘𝑧) − (abs‘𝑦)) ≤ (𝑟 / 2) ↔ (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)))) |
| 71 | 63, 69, 70 | 3imtr3d 293 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) ∧ 𝑧 ∈ ℂ) → ((𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2) → (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)))) |
| 72 | 71 | ralrimiva 3133 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ∀𝑧 ∈ ℂ ((𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2) → (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)))) |
| 73 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → (𝑦(abs ∘ − )𝑤) = (𝑦(abs ∘ − )𝑧)) |
| 74 | 73 | breq1d 5134 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → ((𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2) ↔ (𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2))) |
| 75 | 74 | ralrab 3682 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
{𝑤 ∈ ℂ ∣
(𝑦(abs ∘ −
)𝑤) ≤ (𝑟 / 2)} (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)) ↔ ∀𝑧 ∈ ℂ ((𝑦(abs ∘ − )𝑧) ≤ (𝑟 / 2) → (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)))) |
| 76 | 72, 75 | sylibr 234 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))) |
| 77 | | ssralv 4032 |
. . . . . . . 8
⊢
(((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} → (∀𝑧 ∈ {𝑤 ∈ ℂ ∣ (𝑦(abs ∘ − )𝑤) ≤ (𝑟 / 2)} (abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)) → ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2)))) |
| 78 | 51, 76, 77 | sylc 65 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))) |
| 79 | | brralrspcev 5184 |
. . . . . . 7
⊢
((((abs‘𝑦) +
(𝑟 / 2)) ∈ ℝ
∧ ∀𝑧 ∈
((cls‘𝐽)‘(𝑦(ball‘(abs ∘ −
))(𝑟 / 2)))(abs‘𝑧) ≤ ((abs‘𝑦) + (𝑟 / 2))) → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠) |
| 80 | 48, 78, 79 | syl2anc 584 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠) |
| 81 | | eqid 2736 |
. . . . . . . 8
⊢ (𝐽 ↾t
((cls‘𝐽)‘(𝑦(ball‘(abs ∘ −
))(𝑟 / 2)))) = (𝐽 ↾t
((cls‘𝐽)‘(𝑦(ball‘(abs ∘ −
))(𝑟 /
2)))) |
| 82 | 1, 81 | cnheibor 24910 |
. . . . . . 7
⊢
(((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ⊆ ℂ →
((𝐽 ↾t
((cls‘𝐽)‘(𝑦(ball‘(abs ∘ −
))(𝑟 / 2)))) ∈ Comp
↔ (((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠))) |
| 83 | 37, 82 | syl 17 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ((𝐽 ↾t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp ↔
(((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))(abs‘𝑧) ≤ 𝑠))) |
| 84 | 45, 80, 83 | mpbir2and 713 |
. . . . 5
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → (𝐽 ↾t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈
Comp) |
| 85 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑢 = ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) → (𝐽 ↾t 𝑢) = (𝐽 ↾t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))))) |
| 86 | 85 | eleq1d 2820 |
. . . . . 6
⊢ (𝑢 = ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) → ((𝐽 ↾t 𝑢) ∈ Comp ↔ (𝐽 ↾t
((cls‘𝐽)‘(𝑦(ball‘(abs ∘ −
))(𝑟 / 2)))) ∈
Comp)) |
| 87 | 86 | rspcev 3606 |
. . . . 5
⊢
((((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2))) ∈
(((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝐽 ↾t ((cls‘𝐽)‘(𝑦(ball‘(abs ∘ − ))(𝑟 / 2)))) ∈ Comp) →
∃𝑢 ∈
(((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ Comp) |
| 88 | 43, 84, 87 | syl2anc 584 |
. . . 4
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ −
))𝑟) ⊆ 𝑥)) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ Comp) |
| 89 | 6, 88 | rexlimddv 3148 |
. . 3
⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ Comp) |
| 90 | 89 | rgen2 3185 |
. 2
⊢
∀𝑥 ∈
𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ Comp |
| 91 | | isnlly 23412 |
. 2
⊢ (𝐽 ∈ 𝑛-Locally Comp
↔ (𝐽 ∈ Top ∧
∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ Comp)) |
| 92 | 2, 90, 91 | mpbir2an 711 |
1
⊢ 𝐽 ∈ 𝑛-Locally
Comp |