MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldllycmp Structured version   Visualization version   GIF version

Theorem cldllycmp 23524
Description: A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest 23515.) (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
cldllycmp ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ 𝑛-Locally Comp)

Proof of Theorem cldllycmp
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 23502 . . 3 (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ Top)
2 resttop 23189 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ Top)
31, 2sylan 579 . 2 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ Top)
4 elrest 17487 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑢𝐽 𝑥 = (𝑢𝐴)))
5 simpll 766 . . . . . . . . . 10 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝐽 ∈ 𝑛-Locally Comp)
6 simprl 770 . . . . . . . . . 10 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝑢𝐽)
7 simprr 772 . . . . . . . . . . 11 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝑦 ∈ (𝑢𝐴))
87elin1d 4227 . . . . . . . . . 10 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝑦𝑢)
9 nlly2i 23505 . . . . . . . . . 10 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑢𝐽𝑦𝑢) → ∃𝑠 ∈ 𝒫 𝑢𝑤𝐽 (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))
105, 6, 8, 9syl3anc 1371 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → ∃𝑠 ∈ 𝒫 𝑢𝑤𝐽 (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))
113ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝐽t 𝐴) ∈ Top)
121ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐽 ∈ Top)
13 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐴 ∈ (Clsd‘𝐽))
14 simprlr 779 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑤𝐽)
15 elrestr 17488 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝐴 ∈ (Clsd‘𝐽) ∧ 𝑤𝐽) → (𝑤𝐴) ∈ (𝐽t 𝐴))
1612, 13, 14, 15syl3anc 1371 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑤𝐴) ∈ (𝐽t 𝐴))
17 simprr1 1221 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦𝑤)
18 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑢𝐴))
1918elin2d 4228 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦𝐴)
2017, 19elind 4223 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑤𝐴))
21 opnneip 23148 . . . . . . . . . . . . . . 15 (((𝐽t 𝐴) ∈ Top ∧ (𝑤𝐴) ∈ (𝐽t 𝐴) ∧ 𝑦 ∈ (𝑤𝐴)) → (𝑤𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
2211, 16, 20, 21syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑤𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
23 simprr2 1222 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑤𝑠)
2423ssrind 4265 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑤𝐴) ⊆ (𝑠𝐴))
25 inss2 4259 . . . . . . . . . . . . . . 15 (𝑠𝐴) ⊆ 𝐴
26 eqid 2740 . . . . . . . . . . . . . . . . . 18 𝐽 = 𝐽
2726cldss 23058 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (Clsd‘𝐽) → 𝐴 𝐽)
2813, 27syl 17 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐴 𝐽)
2926restuni 23191 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → 𝐴 = (𝐽t 𝐴))
3012, 28, 29syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐴 = (𝐽t 𝐴))
3125, 30sseqtrid 4061 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ (𝐽t 𝐴))
32 eqid 2740 . . . . . . . . . . . . . . 15 (𝐽t 𝐴) = (𝐽t 𝐴)
3332ssnei2 23145 . . . . . . . . . . . . . 14 ((((𝐽t 𝐴) ∈ Top ∧ (𝑤𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})) ∧ ((𝑤𝐴) ⊆ (𝑠𝐴) ∧ (𝑠𝐴) ⊆ (𝐽t 𝐴))) → (𝑠𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
3411, 22, 24, 31, 33syl22anc 838 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
35 simprll 778 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑠 ∈ 𝒫 𝑢)
3635elpwid 4631 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑠𝑢)
3736ssrind 4265 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ (𝑢𝐴))
38 vex 3492 . . . . . . . . . . . . . . . 16 𝑠 ∈ V
3938inex1 5335 . . . . . . . . . . . . . . 15 (𝑠𝐴) ∈ V
4039elpw 4626 . . . . . . . . . . . . . 14 ((𝑠𝐴) ∈ 𝒫 (𝑢𝐴) ↔ (𝑠𝐴) ⊆ (𝑢𝐴))
4137, 40sylibr 234 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ 𝒫 (𝑢𝐴))
4234, 41elind 4223 . . . . . . . . . . . 12 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴)))
4325a1i 11 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ 𝐴)
44 restabs 23194 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (𝑠𝐴) ⊆ 𝐴𝐴 ∈ (Clsd‘𝐽)) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
4512, 43, 13, 44syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
46 inss1 4258 . . . . . . . . . . . . . . . 16 (𝑠𝐴) ⊆ 𝑠
4746a1i 11 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ 𝑠)
48 restabs 23194 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (𝑠𝐴) ⊆ 𝑠𝑠 ∈ 𝒫 𝑢) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
4912, 47, 35, 48syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
5045, 49eqtr4d 2783 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) = ((𝐽t 𝑠) ↾t (𝑠𝐴)))
51 simprr3 1223 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝐽t 𝑠) ∈ Comp)
52 incom 4230 . . . . . . . . . . . . . . 15 (𝑠𝐴) = (𝐴𝑠)
53 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝐴𝑠) = (𝐴𝑠)
54 ineq1 4234 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐴 → (𝑣𝑠) = (𝐴𝑠))
5554rspceeqv 3658 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (Clsd‘𝐽) ∧ (𝐴𝑠) = (𝐴𝑠)) → ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠))
5613, 53, 55sylancl 585 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠))
57 simplrl 776 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑢𝐽)
58 elssuni 4961 . . . . . . . . . . . . . . . . . . 19 (𝑢𝐽𝑢 𝐽)
5957, 58syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑢 𝐽)
6036, 59sstrd 4019 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑠 𝐽)
6126restcld 23201 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑠 𝐽) → ((𝐴𝑠) ∈ (Clsd‘(𝐽t 𝑠)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠)))
6212, 60, 61syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐴𝑠) ∈ (Clsd‘(𝐽t 𝑠)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠)))
6356, 62mpbird 257 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝐴𝑠) ∈ (Clsd‘(𝐽t 𝑠)))
6452, 63eqeltrid 2848 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ (Clsd‘(𝐽t 𝑠)))
65 cmpcld 23431 . . . . . . . . . . . . . 14 (((𝐽t 𝑠) ∈ Comp ∧ (𝑠𝐴) ∈ (Clsd‘(𝐽t 𝑠))) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) ∈ Comp)
6651, 64, 65syl2anc 583 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) ∈ Comp)
6750, 66eqeltrd 2844 . . . . . . . . . . . 12 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) ∈ Comp)
68 oveq2 7456 . . . . . . . . . . . . . 14 (𝑣 = (𝑠𝐴) → ((𝐽t 𝐴) ↾t 𝑣) = ((𝐽t 𝐴) ↾t (𝑠𝐴)))
6968eleq1d 2829 . . . . . . . . . . . . 13 (𝑣 = (𝑠𝐴) → (((𝐽t 𝐴) ↾t 𝑣) ∈ Comp ↔ ((𝐽t 𝐴) ↾t (𝑠𝐴)) ∈ Comp))
7069rspcev 3635 . . . . . . . . . . . 12 (((𝑠𝐴) ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴)) ∧ ((𝐽t 𝐴) ↾t (𝑠𝐴)) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7142, 67, 70syl2anc 583 . . . . . . . . . . 11 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7271expr 456 . . . . . . . . . 10 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ (𝑠 ∈ 𝒫 𝑢𝑤𝐽)) → ((𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
7372rexlimdvva 3219 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → (∃𝑠 ∈ 𝒫 𝑢𝑤𝐽 (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
7410, 73mpd 15 . . . . . . . 8 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7574anassrs 467 . . . . . . 7 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ 𝑢𝐽) ∧ 𝑦 ∈ (𝑢𝐴)) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7675ralrimiva 3152 . . . . . 6 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ 𝑢𝐽) → ∀𝑦 ∈ (𝑢𝐴)∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
77 pweq 4636 . . . . . . . . 9 (𝑥 = (𝑢𝐴) → 𝒫 𝑥 = 𝒫 (𝑢𝐴))
7877ineq2d 4241 . . . . . . . 8 (𝑥 = (𝑢𝐴) → (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥) = (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴)))
7978rexeqdv 3335 . . . . . . 7 (𝑥 = (𝑢𝐴) → (∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp ↔ ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8079raleqbi1dv 3346 . . . . . 6 (𝑥 = (𝑢𝐴) → (∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp ↔ ∀𝑦 ∈ (𝑢𝐴)∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8176, 80syl5ibrcom 247 . . . . 5 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ 𝑢𝐽) → (𝑥 = (𝑢𝐴) → ∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8281rexlimdva 3161 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (∃𝑢𝐽 𝑥 = (𝑢𝐴) → ∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
834, 82sylbid 240 . . 3 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (𝐽t 𝐴) → ∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8483ralrimiv 3151 . 2 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∀𝑥 ∈ (𝐽t 𝐴)∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
85 isnlly 23498 . 2 ((𝐽t 𝐴) ∈ 𝑛-Locally Comp ↔ ((𝐽t 𝐴) ∈ Top ∧ ∀𝑥 ∈ (𝐽t 𝐴)∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
863, 84, 85sylanbrc 582 1 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ 𝑛-Locally Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cin 3975  wss 3976  𝒫 cpw 4622  {csn 4648   cuni 4931  cfv 6573  (class class class)co 7448  t crest 17480  Topctop 22920  Clsdccld 23045  neicnei 23126  Compccmp 23415  𝑛-Locally cnlly 23494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-en 9004  df-dom 9005  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-nei 23127  df-cmp 23416  df-nlly 23496
This theorem is referenced by:  rellycmp  25008
  Copyright terms: Public domain W3C validator