| Step | Hyp | Ref
| Expression |
| 1 | | nllytop 23416 |
. . 3
⊢ (𝐽 ∈ 𝑛-Locally Comp
→ 𝐽 ∈
Top) |
| 2 | | resttop 23103 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝐴) ∈ Top) |
| 3 | 1, 2 | sylan 580 |
. 2
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) →
(𝐽 ↾t
𝐴) ∈
Top) |
| 4 | | elrest 17446 |
. . . 4
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) →
(𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝐴))) |
| 5 | | simpll 766 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) → 𝐽 ∈ 𝑛-Locally
Comp) |
| 6 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) → 𝑢 ∈ 𝐽) |
| 7 | | simprr 772 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) → 𝑦 ∈ (𝑢 ∩ 𝐴)) |
| 8 | 7 | elin1d 4184 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) → 𝑦 ∈ 𝑢) |
| 9 | | nlly2i 23419 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ 𝑢) → ∃𝑠 ∈ 𝒫 𝑢∃𝑤 ∈ 𝐽 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp)) |
| 10 | 5, 6, 8, 9 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) → ∃𝑠 ∈ 𝒫 𝑢∃𝑤 ∈ 𝐽 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp)) |
| 11 | 3 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝐽 ↾t 𝐴) ∈ Top) |
| 12 | 1 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝐽 ∈ Top) |
| 13 | | simpllr 775 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝐴 ∈ (Clsd‘𝐽)) |
| 14 | | simprlr 779 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑤 ∈ 𝐽) |
| 15 | | elrestr 17447 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ (Clsd‘𝐽) ∧ 𝑤 ∈ 𝐽) → (𝑤 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
| 16 | 12, 13, 14, 15 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑤 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
| 17 | | simprr1 1222 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑦 ∈ 𝑤) |
| 18 | | simplrr 777 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑢 ∩ 𝐴)) |
| 19 | 18 | elin2d 4185 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑦 ∈ 𝐴) |
| 20 | 17, 19 | elind 4180 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑤 ∩ 𝐴)) |
| 21 | | opnneip 23062 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ↾t 𝐴) ∈ Top ∧ (𝑤 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴) ∧ 𝑦 ∈ (𝑤 ∩ 𝐴)) → (𝑤 ∩ 𝐴) ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})) |
| 22 | 11, 16, 20, 21 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑤 ∩ 𝐴) ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})) |
| 23 | | simprr2 1223 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑤 ⊆ 𝑠) |
| 24 | 23 | ssrind 4224 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑤 ∩ 𝐴) ⊆ (𝑠 ∩ 𝐴)) |
| 25 | | inss2 4218 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∩ 𝐴) ⊆ 𝐴 |
| 26 | | eqid 2736 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 27 | 26 | cldss 22972 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐴 ⊆ ∪ 𝐽) |
| 28 | 13, 27 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝐴 ⊆ ∪ 𝐽) |
| 29 | 26 | restuni 23105 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽)
→ 𝐴 = ∪ (𝐽
↾t 𝐴)) |
| 30 | 12, 28, 29 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 31 | 25, 30 | sseqtrid 4006 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ⊆ ∪
(𝐽 ↾t
𝐴)) |
| 32 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢ ∪ (𝐽
↾t 𝐴) =
∪ (𝐽 ↾t 𝐴) |
| 33 | 32 | ssnei2 23059 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ↾t 𝐴) ∈ Top ∧ (𝑤 ∩ 𝐴) ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})) ∧ ((𝑤 ∩ 𝐴) ⊆ (𝑠 ∩ 𝐴) ∧ (𝑠 ∩ 𝐴) ⊆ ∪
(𝐽 ↾t
𝐴))) → (𝑠 ∩ 𝐴) ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})) |
| 34 | 11, 22, 24, 31, 33 | syl22anc 838 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})) |
| 35 | | simprll 778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑠 ∈ 𝒫 𝑢) |
| 36 | 35 | elpwid 4589 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑠 ⊆ 𝑢) |
| 37 | 36 | ssrind 4224 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ⊆ (𝑢 ∩ 𝐴)) |
| 38 | | vex 3468 |
. . . . . . . . . . . . . . . 16
⊢ 𝑠 ∈ V |
| 39 | 38 | inex1 5292 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∩ 𝐴) ∈ V |
| 40 | 39 | elpw 4584 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∩ 𝐴) ∈ 𝒫 (𝑢 ∩ 𝐴) ↔ (𝑠 ∩ 𝐴) ⊆ (𝑢 ∩ 𝐴)) |
| 41 | 37, 40 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ∈ 𝒫 (𝑢 ∩ 𝐴)) |
| 42 | 34, 41 | elind 4180 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))) |
| 43 | 25 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ⊆ 𝐴) |
| 44 | | restabs 23108 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ (𝑠 ∩ 𝐴) ⊆ 𝐴 ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝐽 ↾t 𝐴) ↾t (𝑠 ∩ 𝐴)) = (𝐽 ↾t (𝑠 ∩ 𝐴))) |
| 45 | 12, 43, 13, 44 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ((𝐽 ↾t 𝐴) ↾t (𝑠 ∩ 𝐴)) = (𝐽 ↾t (𝑠 ∩ 𝐴))) |
| 46 | | inss1 4217 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∩ 𝐴) ⊆ 𝑠 |
| 47 | 46 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ⊆ 𝑠) |
| 48 | | restabs 23108 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ (𝑠 ∩ 𝐴) ⊆ 𝑠 ∧ 𝑠 ∈ 𝒫 𝑢) → ((𝐽 ↾t 𝑠) ↾t (𝑠 ∩ 𝐴)) = (𝐽 ↾t (𝑠 ∩ 𝐴))) |
| 49 | 12, 47, 35, 48 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ((𝐽 ↾t 𝑠) ↾t (𝑠 ∩ 𝐴)) = (𝐽 ↾t (𝑠 ∩ 𝐴))) |
| 50 | 45, 49 | eqtr4d 2774 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ((𝐽 ↾t 𝐴) ↾t (𝑠 ∩ 𝐴)) = ((𝐽 ↾t 𝑠) ↾t (𝑠 ∩ 𝐴))) |
| 51 | | simprr3 1224 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝐽 ↾t 𝑠) ∈ Comp) |
| 52 | | incom 4189 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∩ 𝐴) = (𝐴 ∩ 𝑠) |
| 53 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∩ 𝑠) = (𝐴 ∩ 𝑠) |
| 54 | | ineq1 4193 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝐴 → (𝑣 ∩ 𝑠) = (𝐴 ∩ 𝑠)) |
| 55 | 54 | rspceeqv 3629 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ (𝐴 ∩ 𝑠) = (𝐴 ∩ 𝑠)) → ∃𝑣 ∈ (Clsd‘𝐽)(𝐴 ∩ 𝑠) = (𝑣 ∩ 𝑠)) |
| 56 | 13, 53, 55 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ∃𝑣 ∈ (Clsd‘𝐽)(𝐴 ∩ 𝑠) = (𝑣 ∩ 𝑠)) |
| 57 | | simplrl 776 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑢 ∈ 𝐽) |
| 58 | | elssuni 4918 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ 𝐽 → 𝑢 ⊆ ∪ 𝐽) |
| 59 | 57, 58 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑢 ⊆ ∪ 𝐽) |
| 60 | 36, 59 | sstrd 3974 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑠 ⊆ ∪ 𝐽) |
| 61 | 26 | restcld 23115 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝑠 ⊆ ∪ 𝐽)
→ ((𝐴 ∩ 𝑠) ∈ (Clsd‘(𝐽 ↾t 𝑠)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)(𝐴 ∩ 𝑠) = (𝑣 ∩ 𝑠))) |
| 62 | 12, 60, 61 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ((𝐴 ∩ 𝑠) ∈ (Clsd‘(𝐽 ↾t 𝑠)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)(𝐴 ∩ 𝑠) = (𝑣 ∩ 𝑠))) |
| 63 | 56, 62 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝐴 ∩ 𝑠) ∈ (Clsd‘(𝐽 ↾t 𝑠))) |
| 64 | 52, 63 | eqeltrid 2839 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝑠))) |
| 65 | | cmpcld 23345 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ↾t 𝑠) ∈ Comp ∧ (𝑠 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝑠))) → ((𝐽 ↾t 𝑠) ↾t (𝑠 ∩ 𝐴)) ∈ Comp) |
| 66 | 51, 64, 65 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ((𝐽 ↾t 𝑠) ↾t (𝑠 ∩ 𝐴)) ∈ Comp) |
| 67 | 50, 66 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ((𝐽 ↾t 𝐴) ↾t (𝑠 ∩ 𝐴)) ∈ Comp) |
| 68 | | oveq2 7418 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = (𝑠 ∩ 𝐴) → ((𝐽 ↾t 𝐴) ↾t 𝑣) = ((𝐽 ↾t 𝐴) ↾t (𝑠 ∩ 𝐴))) |
| 69 | 68 | eleq1d 2820 |
. . . . . . . . . . . . 13
⊢ (𝑣 = (𝑠 ∩ 𝐴) → (((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp ↔ ((𝐽 ↾t 𝐴) ↾t (𝑠 ∩ 𝐴)) ∈ Comp)) |
| 70 | 69 | rspcev 3606 |
. . . . . . . . . . . 12
⊢ (((𝑠 ∩ 𝐴) ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴)) ∧ ((𝐽 ↾t 𝐴) ↾t (𝑠 ∩ 𝐴)) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp) |
| 71 | 42, 67, 70 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp) |
| 72 | 71 | expr 456 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ (𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽)) → ((𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
| 73 | 72 | rexlimdvva 3202 |
. . . . . . . . 9
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) → (∃𝑠 ∈ 𝒫 𝑢∃𝑤 ∈ 𝐽 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
| 74 | 10, 73 | mpd 15 |
. . . . . . . 8
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) → ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp) |
| 75 | 74 | anassrs 467 |
. . . . . . 7
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝑢 ∩ 𝐴)) → ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp) |
| 76 | 75 | ralrimiva 3133 |
. . . . . 6
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧ 𝑢 ∈ 𝐽) → ∀𝑦 ∈ (𝑢 ∩ 𝐴)∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp) |
| 77 | | pweq 4594 |
. . . . . . . . 9
⊢ (𝑥 = (𝑢 ∩ 𝐴) → 𝒫 𝑥 = 𝒫 (𝑢 ∩ 𝐴)) |
| 78 | 77 | ineq2d 4200 |
. . . . . . . 8
⊢ (𝑥 = (𝑢 ∩ 𝐴) → (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥) = (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))) |
| 79 | 78 | rexeqdv 3310 |
. . . . . . 7
⊢ (𝑥 = (𝑢 ∩ 𝐴) → (∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp ↔ ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
| 80 | 79 | raleqbi1dv 3321 |
. . . . . 6
⊢ (𝑥 = (𝑢 ∩ 𝐴) → (∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp ↔ ∀𝑦 ∈ (𝑢 ∩ 𝐴)∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
| 81 | 76, 80 | syl5ibrcom 247 |
. . . . 5
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧ 𝑢 ∈ 𝐽) → (𝑥 = (𝑢 ∩ 𝐴) → ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
| 82 | 81 | rexlimdva 3142 |
. . . 4
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) →
(∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝐴) → ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
| 83 | 4, 82 | sylbid 240 |
. . 3
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) →
(𝑥 ∈ (𝐽 ↾t 𝐴) → ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
| 84 | 83 | ralrimiv 3132 |
. 2
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) →
∀𝑥 ∈ (𝐽 ↾t 𝐴)∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp) |
| 85 | | isnlly 23412 |
. 2
⊢ ((𝐽 ↾t 𝐴) ∈ 𝑛-Locally Comp
↔ ((𝐽
↾t 𝐴)
∈ Top ∧ ∀𝑥
∈ (𝐽
↾t 𝐴)∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
| 86 | 3, 84, 85 | sylanbrc 583 |
1
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) →
(𝐽 ↾t
𝐴) ∈ 𝑛-Locally
Comp) |