MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldllycmp Structured version   Visualization version   GIF version

Theorem cldllycmp 21707
Description: A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest 21698.) (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
cldllycmp ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ 𝑛-Locally Comp)

Proof of Theorem cldllycmp
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 21685 . . 3 (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ Top)
2 resttop 21372 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ Top)
31, 2sylan 575 . 2 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ Top)
4 elrest 16474 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑢𝐽 𝑥 = (𝑢𝐴)))
5 simpll 757 . . . . . . . . . 10 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝐽 ∈ 𝑛-Locally Comp)
6 simprl 761 . . . . . . . . . 10 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝑢𝐽)
7 inss1 4053 . . . . . . . . . . 11 (𝑢𝐴) ⊆ 𝑢
8 simprr 763 . . . . . . . . . . 11 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝑦 ∈ (𝑢𝐴))
97, 8sseldi 3819 . . . . . . . . . 10 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝑦𝑢)
10 nlly2i 21688 . . . . . . . . . 10 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑢𝐽𝑦𝑢) → ∃𝑠 ∈ 𝒫 𝑢𝑤𝐽 (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))
115, 6, 9, 10syl3anc 1439 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → ∃𝑠 ∈ 𝒫 𝑢𝑤𝐽 (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))
123ad2antrr 716 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝐽t 𝐴) ∈ Top)
131ad3antrrr 720 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐽 ∈ Top)
14 simpllr 766 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐴 ∈ (Clsd‘𝐽))
15 simprlr 770 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑤𝐽)
16 elrestr 16475 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝐴 ∈ (Clsd‘𝐽) ∧ 𝑤𝐽) → (𝑤𝐴) ∈ (𝐽t 𝐴))
1713, 14, 15, 16syl3anc 1439 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑤𝐴) ∈ (𝐽t 𝐴))
18 simprr1 1244 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦𝑤)
19 inss2 4054 . . . . . . . . . . . . . . . . 17 (𝑢𝐴) ⊆ 𝐴
20 simplrr 768 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑢𝐴))
2119, 20sseldi 3819 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦𝐴)
2218, 21elind 4021 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑤𝐴))
23 opnneip 21331 . . . . . . . . . . . . . . 15 (((𝐽t 𝐴) ∈ Top ∧ (𝑤𝐴) ∈ (𝐽t 𝐴) ∧ 𝑦 ∈ (𝑤𝐴)) → (𝑤𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
2412, 17, 22, 23syl3anc 1439 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑤𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
25 simprr2 1246 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑤𝑠)
2625ssrind 4060 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑤𝐴) ⊆ (𝑠𝐴))
27 inss2 4054 . . . . . . . . . . . . . . 15 (𝑠𝐴) ⊆ 𝐴
28 eqid 2778 . . . . . . . . . . . . . . . . . 18 𝐽 = 𝐽
2928cldss 21241 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (Clsd‘𝐽) → 𝐴 𝐽)
3014, 29syl 17 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐴 𝐽)
3128restuni 21374 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → 𝐴 = (𝐽t 𝐴))
3213, 30, 31syl2anc 579 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐴 = (𝐽t 𝐴))
3327, 32syl5sseq 3872 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ (𝐽t 𝐴))
34 eqid 2778 . . . . . . . . . . . . . . 15 (𝐽t 𝐴) = (𝐽t 𝐴)
3534ssnei2 21328 . . . . . . . . . . . . . 14 ((((𝐽t 𝐴) ∈ Top ∧ (𝑤𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})) ∧ ((𝑤𝐴) ⊆ (𝑠𝐴) ∧ (𝑠𝐴) ⊆ (𝐽t 𝐴))) → (𝑠𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
3612, 24, 26, 33, 35syl22anc 829 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
37 simprll 769 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑠 ∈ 𝒫 𝑢)
3837elpwid 4391 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑠𝑢)
3938ssrind 4060 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ (𝑢𝐴))
40 vex 3401 . . . . . . . . . . . . . . . 16 𝑠 ∈ V
4140inex1 5036 . . . . . . . . . . . . . . 15 (𝑠𝐴) ∈ V
4241elpw 4385 . . . . . . . . . . . . . 14 ((𝑠𝐴) ∈ 𝒫 (𝑢𝐴) ↔ (𝑠𝐴) ⊆ (𝑢𝐴))
4339, 42sylibr 226 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ 𝒫 (𝑢𝐴))
4436, 43elind 4021 . . . . . . . . . . . 12 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴)))
4527a1i 11 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ 𝐴)
46 restabs 21377 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (𝑠𝐴) ⊆ 𝐴𝐴 ∈ (Clsd‘𝐽)) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
4713, 45, 14, 46syl3anc 1439 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
48 inss1 4053 . . . . . . . . . . . . . . . 16 (𝑠𝐴) ⊆ 𝑠
4948a1i 11 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ 𝑠)
50 restabs 21377 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (𝑠𝐴) ⊆ 𝑠𝑠 ∈ 𝒫 𝑢) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
5113, 49, 37, 50syl3anc 1439 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
5247, 51eqtr4d 2817 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) = ((𝐽t 𝑠) ↾t (𝑠𝐴)))
53 simprr3 1248 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝐽t 𝑠) ∈ Comp)
54 incom 4028 . . . . . . . . . . . . . . 15 (𝑠𝐴) = (𝐴𝑠)
55 eqid 2778 . . . . . . . . . . . . . . . . 17 (𝐴𝑠) = (𝐴𝑠)
56 ineq1 4030 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐴 → (𝑣𝑠) = (𝐴𝑠))
5756rspceeqv 3529 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (Clsd‘𝐽) ∧ (𝐴𝑠) = (𝐴𝑠)) → ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠))
5814, 55, 57sylancl 580 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠))
59 simplrl 767 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑢𝐽)
60 elssuni 4702 . . . . . . . . . . . . . . . . . . 19 (𝑢𝐽𝑢 𝐽)
6159, 60syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑢 𝐽)
6238, 61sstrd 3831 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑠 𝐽)
6328restcld 21384 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑠 𝐽) → ((𝐴𝑠) ∈ (Clsd‘(𝐽t 𝑠)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠)))
6413, 62, 63syl2anc 579 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐴𝑠) ∈ (Clsd‘(𝐽t 𝑠)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠)))
6558, 64mpbird 249 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝐴𝑠) ∈ (Clsd‘(𝐽t 𝑠)))
6654, 65syl5eqel 2863 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ (Clsd‘(𝐽t 𝑠)))
67 cmpcld 21614 . . . . . . . . . . . . . 14 (((𝐽t 𝑠) ∈ Comp ∧ (𝑠𝐴) ∈ (Clsd‘(𝐽t 𝑠))) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) ∈ Comp)
6853, 66, 67syl2anc 579 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) ∈ Comp)
6952, 68eqeltrd 2859 . . . . . . . . . . . 12 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) ∈ Comp)
70 oveq2 6930 . . . . . . . . . . . . . 14 (𝑣 = (𝑠𝐴) → ((𝐽t 𝐴) ↾t 𝑣) = ((𝐽t 𝐴) ↾t (𝑠𝐴)))
7170eleq1d 2844 . . . . . . . . . . . . 13 (𝑣 = (𝑠𝐴) → (((𝐽t 𝐴) ↾t 𝑣) ∈ Comp ↔ ((𝐽t 𝐴) ↾t (𝑠𝐴)) ∈ Comp))
7271rspcev 3511 . . . . . . . . . . . 12 (((𝑠𝐴) ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴)) ∧ ((𝐽t 𝐴) ↾t (𝑠𝐴)) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7344, 69, 72syl2anc 579 . . . . . . . . . . 11 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7473expr 450 . . . . . . . . . 10 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ (𝑠 ∈ 𝒫 𝑢𝑤𝐽)) → ((𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
7574rexlimdvva 3221 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → (∃𝑠 ∈ 𝒫 𝑢𝑤𝐽 (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
7611, 75mpd 15 . . . . . . . 8 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7776anassrs 461 . . . . . . 7 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ 𝑢𝐽) ∧ 𝑦 ∈ (𝑢𝐴)) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7877ralrimiva 3148 . . . . . 6 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ 𝑢𝐽) → ∀𝑦 ∈ (𝑢𝐴)∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
79 pweq 4382 . . . . . . . . 9 (𝑥 = (𝑢𝐴) → 𝒫 𝑥 = 𝒫 (𝑢𝐴))
8079ineq2d 4037 . . . . . . . 8 (𝑥 = (𝑢𝐴) → (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥) = (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴)))
8180rexeqdv 3341 . . . . . . 7 (𝑥 = (𝑢𝐴) → (∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp ↔ ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8281raleqbi1dv 3328 . . . . . 6 (𝑥 = (𝑢𝐴) → (∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp ↔ ∀𝑦 ∈ (𝑢𝐴)∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8378, 82syl5ibrcom 239 . . . . 5 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ 𝑢𝐽) → (𝑥 = (𝑢𝐴) → ∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8483rexlimdva 3213 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (∃𝑢𝐽 𝑥 = (𝑢𝐴) → ∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
854, 84sylbid 232 . . 3 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (𝐽t 𝐴) → ∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8685ralrimiv 3147 . 2 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∀𝑥 ∈ (𝐽t 𝐴)∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
87 isnlly 21681 . 2 ((𝐽t 𝐴) ∈ 𝑛-Locally Comp ↔ ((𝐽t 𝐴) ∈ Top ∧ ∀𝑥 ∈ (𝐽t 𝐴)∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
883, 86, 87sylanbrc 578 1 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ 𝑛-Locally Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  wrex 3091  cin 3791  wss 3792  𝒫 cpw 4379  {csn 4398   cuni 4671  cfv 6135  (class class class)co 6922  t crest 16467  Topctop 21105  Clsdccld 21228  neicnei 21309  Compccmp 21598  𝑛-Locally cnlly 21677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-fin 8245  df-fi 8605  df-rest 16469  df-topgen 16490  df-top 21106  df-topon 21123  df-bases 21158  df-cld 21231  df-nei 21310  df-cmp 21599  df-nlly 21679
This theorem is referenced by:  rellycmp  23164
  Copyright terms: Public domain W3C validator