Step | Hyp | Ref
| Expression |
1 | | nllytop 22622 |
. . 3
⊢ (𝐽 ∈ 𝑛-Locally Comp
→ 𝐽 ∈
Top) |
2 | | resttop 22309 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝐴) ∈ Top) |
3 | 1, 2 | sylan 580 |
. 2
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) →
(𝐽 ↾t
𝐴) ∈
Top) |
4 | | elrest 17136 |
. . . 4
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) →
(𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝐴))) |
5 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) → 𝐽 ∈ 𝑛-Locally
Comp) |
6 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) → 𝑢 ∈ 𝐽) |
7 | | simprr 770 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) → 𝑦 ∈ (𝑢 ∩ 𝐴)) |
8 | 7 | elin1d 4137 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) → 𝑦 ∈ 𝑢) |
9 | | nlly2i 22625 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ 𝑢) → ∃𝑠 ∈ 𝒫 𝑢∃𝑤 ∈ 𝐽 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp)) |
10 | 5, 6, 8, 9 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) → ∃𝑠 ∈ 𝒫 𝑢∃𝑤 ∈ 𝐽 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp)) |
11 | 3 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝐽 ↾t 𝐴) ∈ Top) |
12 | 1 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝐽 ∈ Top) |
13 | | simpllr 773 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝐴 ∈ (Clsd‘𝐽)) |
14 | | simprlr 777 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑤 ∈ 𝐽) |
15 | | elrestr 17137 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ (Clsd‘𝐽) ∧ 𝑤 ∈ 𝐽) → (𝑤 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
16 | 12, 13, 14, 15 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑤 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
17 | | simprr1 1220 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑦 ∈ 𝑤) |
18 | | simplrr 775 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑢 ∩ 𝐴)) |
19 | 18 | elin2d 4138 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑦 ∈ 𝐴) |
20 | 17, 19 | elind 4133 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑤 ∩ 𝐴)) |
21 | | opnneip 22268 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ↾t 𝐴) ∈ Top ∧ (𝑤 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴) ∧ 𝑦 ∈ (𝑤 ∩ 𝐴)) → (𝑤 ∩ 𝐴) ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})) |
22 | 11, 16, 20, 21 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑤 ∩ 𝐴) ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})) |
23 | | simprr2 1221 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑤 ⊆ 𝑠) |
24 | 23 | ssrind 4175 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑤 ∩ 𝐴) ⊆ (𝑠 ∩ 𝐴)) |
25 | | inss2 4169 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∩ 𝐴) ⊆ 𝐴 |
26 | | eqid 2740 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝐽 =
∪ 𝐽 |
27 | 26 | cldss 22178 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐴 ⊆ ∪ 𝐽) |
28 | 13, 27 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝐴 ⊆ ∪ 𝐽) |
29 | 26 | restuni 22311 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽)
→ 𝐴 = ∪ (𝐽
↾t 𝐴)) |
30 | 12, 28, 29 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
31 | 25, 30 | sseqtrid 3978 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ⊆ ∪
(𝐽 ↾t
𝐴)) |
32 | | eqid 2740 |
. . . . . . . . . . . . . . 15
⊢ ∪ (𝐽
↾t 𝐴) =
∪ (𝐽 ↾t 𝐴) |
33 | 32 | ssnei2 22265 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ↾t 𝐴) ∈ Top ∧ (𝑤 ∩ 𝐴) ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})) ∧ ((𝑤 ∩ 𝐴) ⊆ (𝑠 ∩ 𝐴) ∧ (𝑠 ∩ 𝐴) ⊆ ∪
(𝐽 ↾t
𝐴))) → (𝑠 ∩ 𝐴) ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})) |
34 | 11, 22, 24, 31, 33 | syl22anc 836 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})) |
35 | | simprll 776 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑠 ∈ 𝒫 𝑢) |
36 | 35 | elpwid 4550 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑠 ⊆ 𝑢) |
37 | 36 | ssrind 4175 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ⊆ (𝑢 ∩ 𝐴)) |
38 | | vex 3435 |
. . . . . . . . . . . . . . . 16
⊢ 𝑠 ∈ V |
39 | 38 | inex1 5245 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∩ 𝐴) ∈ V |
40 | 39 | elpw 4543 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∩ 𝐴) ∈ 𝒫 (𝑢 ∩ 𝐴) ↔ (𝑠 ∩ 𝐴) ⊆ (𝑢 ∩ 𝐴)) |
41 | 37, 40 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ∈ 𝒫 (𝑢 ∩ 𝐴)) |
42 | 34, 41 | elind 4133 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))) |
43 | 25 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ⊆ 𝐴) |
44 | | restabs 22314 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ (𝑠 ∩ 𝐴) ⊆ 𝐴 ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝐽 ↾t 𝐴) ↾t (𝑠 ∩ 𝐴)) = (𝐽 ↾t (𝑠 ∩ 𝐴))) |
45 | 12, 43, 13, 44 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ((𝐽 ↾t 𝐴) ↾t (𝑠 ∩ 𝐴)) = (𝐽 ↾t (𝑠 ∩ 𝐴))) |
46 | | inss1 4168 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∩ 𝐴) ⊆ 𝑠 |
47 | 46 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ⊆ 𝑠) |
48 | | restabs 22314 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ (𝑠 ∩ 𝐴) ⊆ 𝑠 ∧ 𝑠 ∈ 𝒫 𝑢) → ((𝐽 ↾t 𝑠) ↾t (𝑠 ∩ 𝐴)) = (𝐽 ↾t (𝑠 ∩ 𝐴))) |
49 | 12, 47, 35, 48 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ((𝐽 ↾t 𝑠) ↾t (𝑠 ∩ 𝐴)) = (𝐽 ↾t (𝑠 ∩ 𝐴))) |
50 | 45, 49 | eqtr4d 2783 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ((𝐽 ↾t 𝐴) ↾t (𝑠 ∩ 𝐴)) = ((𝐽 ↾t 𝑠) ↾t (𝑠 ∩ 𝐴))) |
51 | | simprr3 1222 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝐽 ↾t 𝑠) ∈ Comp) |
52 | | incom 4140 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∩ 𝐴) = (𝐴 ∩ 𝑠) |
53 | | eqid 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∩ 𝑠) = (𝐴 ∩ 𝑠) |
54 | | ineq1 4145 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝐴 → (𝑣 ∩ 𝑠) = (𝐴 ∩ 𝑠)) |
55 | 54 | rspceeqv 3576 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ (𝐴 ∩ 𝑠) = (𝐴 ∩ 𝑠)) → ∃𝑣 ∈ (Clsd‘𝐽)(𝐴 ∩ 𝑠) = (𝑣 ∩ 𝑠)) |
56 | 13, 53, 55 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ∃𝑣 ∈ (Clsd‘𝐽)(𝐴 ∩ 𝑠) = (𝑣 ∩ 𝑠)) |
57 | | simplrl 774 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑢 ∈ 𝐽) |
58 | | elssuni 4877 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ 𝐽 → 𝑢 ⊆ ∪ 𝐽) |
59 | 57, 58 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑢 ⊆ ∪ 𝐽) |
60 | 36, 59 | sstrd 3936 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → 𝑠 ⊆ ∪ 𝐽) |
61 | 26 | restcld 22321 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝑠 ⊆ ∪ 𝐽)
→ ((𝐴 ∩ 𝑠) ∈ (Clsd‘(𝐽 ↾t 𝑠)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)(𝐴 ∩ 𝑠) = (𝑣 ∩ 𝑠))) |
62 | 12, 60, 61 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ((𝐴 ∩ 𝑠) ∈ (Clsd‘(𝐽 ↾t 𝑠)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)(𝐴 ∩ 𝑠) = (𝑣 ∩ 𝑠))) |
63 | 56, 62 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝐴 ∩ 𝑠) ∈ (Clsd‘(𝐽 ↾t 𝑠))) |
64 | 52, 63 | eqeltrid 2845 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → (𝑠 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝑠))) |
65 | | cmpcld 22551 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ↾t 𝑠) ∈ Comp ∧ (𝑠 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝑠))) → ((𝐽 ↾t 𝑠) ↾t (𝑠 ∩ 𝐴)) ∈ Comp) |
66 | 51, 64, 65 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ((𝐽 ↾t 𝑠) ↾t (𝑠 ∩ 𝐴)) ∈ Comp) |
67 | 50, 66 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ((𝐽 ↾t 𝐴) ↾t (𝑠 ∩ 𝐴)) ∈ Comp) |
68 | | oveq2 7279 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = (𝑠 ∩ 𝐴) → ((𝐽 ↾t 𝐴) ↾t 𝑣) = ((𝐽 ↾t 𝐴) ↾t (𝑠 ∩ 𝐴))) |
69 | 68 | eleq1d 2825 |
. . . . . . . . . . . . 13
⊢ (𝑣 = (𝑠 ∩ 𝐴) → (((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp ↔ ((𝐽 ↾t 𝐴) ↾t (𝑠 ∩ 𝐴)) ∈ Comp)) |
70 | 69 | rspcev 3561 |
. . . . . . . . . . . 12
⊢ (((𝑠 ∩ 𝐴) ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴)) ∧ ((𝐽 ↾t 𝐴) ↾t (𝑠 ∩ 𝐴)) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp) |
71 | 42, 67, 70 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp))) → ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp) |
72 | 71 | expr 457 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) ∧ (𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽)) → ((𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
73 | 72 | rexlimdvva 3225 |
. . . . . . . . 9
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) → (∃𝑠 ∈ 𝒫 𝑢∃𝑤 ∈ 𝐽 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
74 | 10, 73 | mpd 15 |
. . . . . . . 8
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧
(𝑢 ∈ 𝐽 ∧ 𝑦 ∈ (𝑢 ∩ 𝐴))) → ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp) |
75 | 74 | anassrs 468 |
. . . . . . 7
⊢ ((((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧ 𝑢 ∈ 𝐽) ∧ 𝑦 ∈ (𝑢 ∩ 𝐴)) → ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp) |
76 | 75 | ralrimiva 3110 |
. . . . . 6
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧ 𝑢 ∈ 𝐽) → ∀𝑦 ∈ (𝑢 ∩ 𝐴)∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp) |
77 | | pweq 4555 |
. . . . . . . . 9
⊢ (𝑥 = (𝑢 ∩ 𝐴) → 𝒫 𝑥 = 𝒫 (𝑢 ∩ 𝐴)) |
78 | 77 | ineq2d 4152 |
. . . . . . . 8
⊢ (𝑥 = (𝑢 ∩ 𝐴) → (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥) = (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))) |
79 | 78 | rexeqdv 3348 |
. . . . . . 7
⊢ (𝑥 = (𝑢 ∩ 𝐴) → (∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp ↔ ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
80 | 79 | raleqbi1dv 3339 |
. . . . . 6
⊢ (𝑥 = (𝑢 ∩ 𝐴) → (∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp ↔ ∀𝑦 ∈ (𝑢 ∩ 𝐴)∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢 ∩ 𝐴))((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
81 | 76, 80 | syl5ibrcom 246 |
. . . . 5
⊢ (((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) ∧ 𝑢 ∈ 𝐽) → (𝑥 = (𝑢 ∩ 𝐴) → ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
82 | 81 | rexlimdva 3215 |
. . . 4
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) →
(∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝐴) → ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
83 | 4, 82 | sylbid 239 |
. . 3
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) →
(𝑥 ∈ (𝐽 ↾t 𝐴) → ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
84 | 83 | ralrimiv 3109 |
. 2
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) →
∀𝑥 ∈ (𝐽 ↾t 𝐴)∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp) |
85 | | isnlly 22618 |
. 2
⊢ ((𝐽 ↾t 𝐴) ∈ 𝑛-Locally Comp
↔ ((𝐽
↾t 𝐴)
∈ Top ∧ ∀𝑥
∈ (𝐽
↾t 𝐴)∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐴) ↾t 𝑣) ∈ Comp)) |
86 | 3, 84, 85 | sylanbrc 583 |
1
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐴 ∈
(Clsd‘𝐽)) →
(𝐽 ↾t
𝐴) ∈ 𝑛-Locally
Comp) |