MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldllycmp Structured version   Visualization version   GIF version

Theorem cldllycmp 22644
Description: A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest 22635.) (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
cldllycmp ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ 𝑛-Locally Comp)

Proof of Theorem cldllycmp
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 22622 . . 3 (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ Top)
2 resttop 22309 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ Top)
31, 2sylan 580 . 2 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ Top)
4 elrest 17136 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑢𝐽 𝑥 = (𝑢𝐴)))
5 simpll 764 . . . . . . . . . 10 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝐽 ∈ 𝑛-Locally Comp)
6 simprl 768 . . . . . . . . . 10 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝑢𝐽)
7 simprr 770 . . . . . . . . . . 11 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝑦 ∈ (𝑢𝐴))
87elin1d 4137 . . . . . . . . . 10 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝑦𝑢)
9 nlly2i 22625 . . . . . . . . . 10 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑢𝐽𝑦𝑢) → ∃𝑠 ∈ 𝒫 𝑢𝑤𝐽 (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))
105, 6, 8, 9syl3anc 1370 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → ∃𝑠 ∈ 𝒫 𝑢𝑤𝐽 (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))
113ad2antrr 723 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝐽t 𝐴) ∈ Top)
121ad3antrrr 727 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐽 ∈ Top)
13 simpllr 773 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐴 ∈ (Clsd‘𝐽))
14 simprlr 777 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑤𝐽)
15 elrestr 17137 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝐴 ∈ (Clsd‘𝐽) ∧ 𝑤𝐽) → (𝑤𝐴) ∈ (𝐽t 𝐴))
1612, 13, 14, 15syl3anc 1370 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑤𝐴) ∈ (𝐽t 𝐴))
17 simprr1 1220 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦𝑤)
18 simplrr 775 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑢𝐴))
1918elin2d 4138 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦𝐴)
2017, 19elind 4133 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑤𝐴))
21 opnneip 22268 . . . . . . . . . . . . . . 15 (((𝐽t 𝐴) ∈ Top ∧ (𝑤𝐴) ∈ (𝐽t 𝐴) ∧ 𝑦 ∈ (𝑤𝐴)) → (𝑤𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
2211, 16, 20, 21syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑤𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
23 simprr2 1221 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑤𝑠)
2423ssrind 4175 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑤𝐴) ⊆ (𝑠𝐴))
25 inss2 4169 . . . . . . . . . . . . . . 15 (𝑠𝐴) ⊆ 𝐴
26 eqid 2740 . . . . . . . . . . . . . . . . . 18 𝐽 = 𝐽
2726cldss 22178 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (Clsd‘𝐽) → 𝐴 𝐽)
2813, 27syl 17 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐴 𝐽)
2926restuni 22311 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → 𝐴 = (𝐽t 𝐴))
3012, 28, 29syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐴 = (𝐽t 𝐴))
3125, 30sseqtrid 3978 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ (𝐽t 𝐴))
32 eqid 2740 . . . . . . . . . . . . . . 15 (𝐽t 𝐴) = (𝐽t 𝐴)
3332ssnei2 22265 . . . . . . . . . . . . . 14 ((((𝐽t 𝐴) ∈ Top ∧ (𝑤𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})) ∧ ((𝑤𝐴) ⊆ (𝑠𝐴) ∧ (𝑠𝐴) ⊆ (𝐽t 𝐴))) → (𝑠𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
3411, 22, 24, 31, 33syl22anc 836 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
35 simprll 776 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑠 ∈ 𝒫 𝑢)
3635elpwid 4550 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑠𝑢)
3736ssrind 4175 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ (𝑢𝐴))
38 vex 3435 . . . . . . . . . . . . . . . 16 𝑠 ∈ V
3938inex1 5245 . . . . . . . . . . . . . . 15 (𝑠𝐴) ∈ V
4039elpw 4543 . . . . . . . . . . . . . 14 ((𝑠𝐴) ∈ 𝒫 (𝑢𝐴) ↔ (𝑠𝐴) ⊆ (𝑢𝐴))
4137, 40sylibr 233 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ 𝒫 (𝑢𝐴))
4234, 41elind 4133 . . . . . . . . . . . 12 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴)))
4325a1i 11 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ 𝐴)
44 restabs 22314 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (𝑠𝐴) ⊆ 𝐴𝐴 ∈ (Clsd‘𝐽)) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
4512, 43, 13, 44syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
46 inss1 4168 . . . . . . . . . . . . . . . 16 (𝑠𝐴) ⊆ 𝑠
4746a1i 11 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ 𝑠)
48 restabs 22314 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (𝑠𝐴) ⊆ 𝑠𝑠 ∈ 𝒫 𝑢) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
4912, 47, 35, 48syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
5045, 49eqtr4d 2783 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) = ((𝐽t 𝑠) ↾t (𝑠𝐴)))
51 simprr3 1222 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝐽t 𝑠) ∈ Comp)
52 incom 4140 . . . . . . . . . . . . . . 15 (𝑠𝐴) = (𝐴𝑠)
53 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝐴𝑠) = (𝐴𝑠)
54 ineq1 4145 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐴 → (𝑣𝑠) = (𝐴𝑠))
5554rspceeqv 3576 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (Clsd‘𝐽) ∧ (𝐴𝑠) = (𝐴𝑠)) → ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠))
5613, 53, 55sylancl 586 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠))
57 simplrl 774 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑢𝐽)
58 elssuni 4877 . . . . . . . . . . . . . . . . . . 19 (𝑢𝐽𝑢 𝐽)
5957, 58syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑢 𝐽)
6036, 59sstrd 3936 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑠 𝐽)
6126restcld 22321 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑠 𝐽) → ((𝐴𝑠) ∈ (Clsd‘(𝐽t 𝑠)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠)))
6212, 60, 61syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐴𝑠) ∈ (Clsd‘(𝐽t 𝑠)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠)))
6356, 62mpbird 256 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝐴𝑠) ∈ (Clsd‘(𝐽t 𝑠)))
6452, 63eqeltrid 2845 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ (Clsd‘(𝐽t 𝑠)))
65 cmpcld 22551 . . . . . . . . . . . . . 14 (((𝐽t 𝑠) ∈ Comp ∧ (𝑠𝐴) ∈ (Clsd‘(𝐽t 𝑠))) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) ∈ Comp)
6651, 64, 65syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) ∈ Comp)
6750, 66eqeltrd 2841 . . . . . . . . . . . 12 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) ∈ Comp)
68 oveq2 7279 . . . . . . . . . . . . . 14 (𝑣 = (𝑠𝐴) → ((𝐽t 𝐴) ↾t 𝑣) = ((𝐽t 𝐴) ↾t (𝑠𝐴)))
6968eleq1d 2825 . . . . . . . . . . . . 13 (𝑣 = (𝑠𝐴) → (((𝐽t 𝐴) ↾t 𝑣) ∈ Comp ↔ ((𝐽t 𝐴) ↾t (𝑠𝐴)) ∈ Comp))
7069rspcev 3561 . . . . . . . . . . . 12 (((𝑠𝐴) ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴)) ∧ ((𝐽t 𝐴) ↾t (𝑠𝐴)) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7142, 67, 70syl2anc 584 . . . . . . . . . . 11 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7271expr 457 . . . . . . . . . 10 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ (𝑠 ∈ 𝒫 𝑢𝑤𝐽)) → ((𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
7372rexlimdvva 3225 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → (∃𝑠 ∈ 𝒫 𝑢𝑤𝐽 (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
7410, 73mpd 15 . . . . . . . 8 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7574anassrs 468 . . . . . . 7 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ 𝑢𝐽) ∧ 𝑦 ∈ (𝑢𝐴)) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7675ralrimiva 3110 . . . . . 6 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ 𝑢𝐽) → ∀𝑦 ∈ (𝑢𝐴)∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
77 pweq 4555 . . . . . . . . 9 (𝑥 = (𝑢𝐴) → 𝒫 𝑥 = 𝒫 (𝑢𝐴))
7877ineq2d 4152 . . . . . . . 8 (𝑥 = (𝑢𝐴) → (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥) = (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴)))
7978rexeqdv 3348 . . . . . . 7 (𝑥 = (𝑢𝐴) → (∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp ↔ ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8079raleqbi1dv 3339 . . . . . 6 (𝑥 = (𝑢𝐴) → (∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp ↔ ∀𝑦 ∈ (𝑢𝐴)∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8176, 80syl5ibrcom 246 . . . . 5 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ 𝑢𝐽) → (𝑥 = (𝑢𝐴) → ∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8281rexlimdva 3215 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (∃𝑢𝐽 𝑥 = (𝑢𝐴) → ∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
834, 82sylbid 239 . . 3 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (𝐽t 𝐴) → ∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8483ralrimiv 3109 . 2 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∀𝑥 ∈ (𝐽t 𝐴)∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
85 isnlly 22618 . 2 ((𝐽t 𝐴) ∈ 𝑛-Locally Comp ↔ ((𝐽t 𝐴) ∈ Top ∧ ∀𝑥 ∈ (𝐽t 𝐴)∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
863, 84, 85sylanbrc 583 1 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ 𝑛-Locally Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wral 3066  wrex 3067  cin 3891  wss 3892  𝒫 cpw 4539  {csn 4567   cuni 4845  cfv 6432  (class class class)co 7271  t crest 17129  Topctop 22040  Clsdccld 22165  neicnei 22246  Compccmp 22535  𝑛-Locally cnlly 22614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-1o 8288  df-er 8481  df-en 8717  df-dom 8718  df-fin 8720  df-fi 9148  df-rest 17131  df-topgen 17152  df-top 22041  df-topon 22058  df-bases 22094  df-cld 22168  df-nei 22247  df-cmp 22536  df-nlly 22616
This theorem is referenced by:  rellycmp  24118
  Copyright terms: Public domain W3C validator