Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausllycmp Structured version   Visualization version   GIF version

Theorem hausllycmp 22020
 Description: A compact Hausdorff space is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
hausllycmp ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ 𝑛-Locally Comp)

Proof of Theorem hausllycmp
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 21857 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ Top)
21adantr 481 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ Top)
3 eqid 2825 . . . . . 6 𝐽 = 𝐽
4 eqid 2825 . . . . . 6 {𝑧𝐽 ∣ ∃𝑣𝐽 (𝑦𝑣 ∧ ((cls‘𝐽)‘𝑣) ⊆ ( 𝐽𝑧))} = {𝑧𝐽 ∣ ∃𝑣𝐽 (𝑦𝑣 ∧ ((cls‘𝐽)‘𝑣) ⊆ ( 𝐽𝑧))}
5 simpll 763 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Haus)
6 difssd 4112 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ( 𝐽𝑥) ⊆ 𝐽)
7 simplr 765 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Comp)
81ad2antrr 722 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Top)
9 simprl 767 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝐽)
103opncld 21559 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
118, 9, 10syl2anc 584 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
12 cmpcld 21928 . . . . . . 7 ((𝐽 ∈ Comp ∧ ( 𝐽𝑥) ∈ (Clsd‘𝐽)) → (𝐽t ( 𝐽𝑥)) ∈ Comp)
137, 11, 12syl2anc 584 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → (𝐽t ( 𝐽𝑥)) ∈ Comp)
14 simprr 769 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑥)
15 elssuni 4865 . . . . . . . . 9 (𝑥𝐽𝑥 𝐽)
1615ad2antrl 724 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥 𝐽)
17 dfss4 4238 . . . . . . . 8 (𝑥 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
1816, 17sylib 219 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
1914, 18eleqtrrd 2920 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ ( 𝐽 ∖ ( 𝐽𝑥)))
203, 4, 5, 6, 13, 19hauscmplem 21932 . . . . 5 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑢𝐽 (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ ( 𝐽 ∖ ( 𝐽𝑥))))
2118sseq2d 4002 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → (((cls‘𝐽)‘𝑢) ⊆ ( 𝐽 ∖ ( 𝐽𝑥)) ↔ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))
2221anbi2d 628 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ((𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ ( 𝐽 ∖ ( 𝐽𝑥))) ↔ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥)))
2322rexbidv 3301 . . . . 5 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → (∃𝑢𝐽 (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ ( 𝐽 ∖ ( 𝐽𝑥))) ↔ ∃𝑢𝐽 (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥)))
2420, 23mpbid 233 . . . 4 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑢𝐽 (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))
258adantr 481 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝐽 ∈ Top)
26 simprl 767 . . . . . . . 8 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢𝐽)
27 simprrl 777 . . . . . . . 8 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑦𝑢)
28 opnneip 21645 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑢𝐽𝑦𝑢) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦}))
2925, 26, 27, 28syl3anc 1365 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦}))
30 elssuni 4865 . . . . . . . . 9 (𝑢𝐽𝑢 𝐽)
3130ad2antrl 724 . . . . . . . 8 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢 𝐽)
323sscls 21582 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢))
3325, 31, 32syl2anc 584 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢))
343clsss3 21585 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → ((cls‘𝐽)‘𝑢) ⊆ 𝐽)
3525, 31, 34syl2anc 584 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ⊆ 𝐽)
363ssnei2 21642 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑢 ∈ ((nei‘𝐽)‘{𝑦})) ∧ (𝑢 ⊆ ((cls‘𝐽)‘𝑢) ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝐽)) → ((cls‘𝐽)‘𝑢) ∈ ((nei‘𝐽)‘{𝑦}))
3725, 29, 33, 35, 36syl22anc 836 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ ((nei‘𝐽)‘{𝑦}))
38 simprrr 778 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ⊆ 𝑥)
39 vex 3502 . . . . . . . 8 𝑥 ∈ V
4039elpw2 5244 . . . . . . 7 (((cls‘𝐽)‘𝑢) ∈ 𝒫 𝑥 ↔ ((cls‘𝐽)‘𝑢) ⊆ 𝑥)
4138, 40sylibr 235 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ 𝒫 𝑥)
4237, 41elind 4174 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥))
437adantr 481 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝐽 ∈ Comp)
443clscld 21573 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽))
4525, 31, 44syl2anc 584 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽))
46 cmpcld 21928 . . . . . 6 ((𝐽 ∈ Comp ∧ ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) → (𝐽t ((cls‘𝐽)‘𝑢)) ∈ Comp)
4743, 45, 46syl2anc 584 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → (𝐽t ((cls‘𝐽)‘𝑢)) ∈ Comp)
48 oveq2 7159 . . . . . . 7 (𝑣 = ((cls‘𝐽)‘𝑢) → (𝐽t 𝑣) = (𝐽t ((cls‘𝐽)‘𝑢)))
4948eleq1d 2901 . . . . . 6 (𝑣 = ((cls‘𝐽)‘𝑢) → ((𝐽t 𝑣) ∈ Comp ↔ (𝐽t ((cls‘𝐽)‘𝑢)) ∈ Comp))
5049rspcev 3626 . . . . 5 ((((cls‘𝐽)‘𝑢) ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝐽t ((cls‘𝐽)‘𝑢)) ∈ Comp) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp)
5142, 47, 50syl2anc 584 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp)
5224, 51rexlimddv 3295 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp)
5352ralrimivva 3195 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → ∀𝑥𝐽𝑦𝑥𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp)
54 isnlly 21995 . 2 (𝐽 ∈ 𝑛-Locally Comp ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp))
552, 53, 54sylanbrc 583 1 ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ 𝑛-Locally Comp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   = wceq 1530   ∈ wcel 2107  ∀wral 3142  ∃wrex 3143  {crab 3146   ∖ cdif 3936   ∩ cin 3938   ⊆ wss 3939  𝒫 cpw 4541  {csn 4563  ∪ cuni 4836  ‘cfv 6351  (class class class)co 7151   ↾t crest 16686  Topctop 21419  Clsdccld 21542  clsccl 21544  neicnei 21623  Hauscha 21834  Compccmp 21912  𝑛-Locally cnlly 21991 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-fin 8505  df-fi 8867  df-rest 16688  df-topgen 16709  df-top 21420  df-topon 21437  df-bases 21472  df-cld 21545  df-cls 21547  df-nei 21624  df-haus 21841  df-cmp 21913  df-nlly 21993 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator