MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausllycmp Structured version   Visualization version   GIF version

Theorem hausllycmp 22099
Description: A compact Hausdorff space is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
hausllycmp ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ 𝑛-Locally Comp)

Proof of Theorem hausllycmp
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 21936 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ Top)
21adantr 484 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ Top)
3 eqid 2798 . . . . . 6 𝐽 = 𝐽
4 eqid 2798 . . . . . 6 {𝑧𝐽 ∣ ∃𝑣𝐽 (𝑦𝑣 ∧ ((cls‘𝐽)‘𝑣) ⊆ ( 𝐽𝑧))} = {𝑧𝐽 ∣ ∃𝑣𝐽 (𝑦𝑣 ∧ ((cls‘𝐽)‘𝑣) ⊆ ( 𝐽𝑧))}
5 simpll 766 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Haus)
6 difssd 4060 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ( 𝐽𝑥) ⊆ 𝐽)
7 simplr 768 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Comp)
81ad2antrr 725 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Top)
9 simprl 770 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝐽)
103opncld 21638 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
118, 9, 10syl2anc 587 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
12 cmpcld 22007 . . . . . . 7 ((𝐽 ∈ Comp ∧ ( 𝐽𝑥) ∈ (Clsd‘𝐽)) → (𝐽t ( 𝐽𝑥)) ∈ Comp)
137, 11, 12syl2anc 587 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → (𝐽t ( 𝐽𝑥)) ∈ Comp)
14 simprr 772 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑥)
15 elssuni 4830 . . . . . . . . 9 (𝑥𝐽𝑥 𝐽)
1615ad2antrl 727 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥 𝐽)
17 dfss4 4185 . . . . . . . 8 (𝑥 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
1816, 17sylib 221 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
1914, 18eleqtrrd 2893 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ ( 𝐽 ∖ ( 𝐽𝑥)))
203, 4, 5, 6, 13, 19hauscmplem 22011 . . . . 5 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑢𝐽 (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ ( 𝐽 ∖ ( 𝐽𝑥))))
2118sseq2d 3947 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → (((cls‘𝐽)‘𝑢) ⊆ ( 𝐽 ∖ ( 𝐽𝑥)) ↔ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))
2221anbi2d 631 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ((𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ ( 𝐽 ∖ ( 𝐽𝑥))) ↔ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥)))
2322rexbidv 3256 . . . . 5 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → (∃𝑢𝐽 (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ ( 𝐽 ∖ ( 𝐽𝑥))) ↔ ∃𝑢𝐽 (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥)))
2420, 23mpbid 235 . . . 4 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑢𝐽 (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))
258adantr 484 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝐽 ∈ Top)
26 simprl 770 . . . . . . . 8 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢𝐽)
27 simprrl 780 . . . . . . . 8 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑦𝑢)
28 opnneip 21724 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑢𝐽𝑦𝑢) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦}))
2925, 26, 27, 28syl3anc 1368 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦}))
30 elssuni 4830 . . . . . . . . 9 (𝑢𝐽𝑢 𝐽)
3130ad2antrl 727 . . . . . . . 8 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢 𝐽)
323sscls 21661 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢))
3325, 31, 32syl2anc 587 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢))
343clsss3 21664 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → ((cls‘𝐽)‘𝑢) ⊆ 𝐽)
3525, 31, 34syl2anc 587 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ⊆ 𝐽)
363ssnei2 21721 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑢 ∈ ((nei‘𝐽)‘{𝑦})) ∧ (𝑢 ⊆ ((cls‘𝐽)‘𝑢) ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝐽)) → ((cls‘𝐽)‘𝑢) ∈ ((nei‘𝐽)‘{𝑦}))
3725, 29, 33, 35, 36syl22anc 837 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ ((nei‘𝐽)‘{𝑦}))
38 simprrr 781 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ⊆ 𝑥)
39 vex 3444 . . . . . . . 8 𝑥 ∈ V
4039elpw2 5212 . . . . . . 7 (((cls‘𝐽)‘𝑢) ∈ 𝒫 𝑥 ↔ ((cls‘𝐽)‘𝑢) ⊆ 𝑥)
4138, 40sylibr 237 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ 𝒫 𝑥)
4237, 41elind 4121 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥))
437adantr 484 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝐽 ∈ Comp)
443clscld 21652 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽))
4525, 31, 44syl2anc 587 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽))
46 cmpcld 22007 . . . . . 6 ((𝐽 ∈ Comp ∧ ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) → (𝐽t ((cls‘𝐽)‘𝑢)) ∈ Comp)
4743, 45, 46syl2anc 587 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → (𝐽t ((cls‘𝐽)‘𝑢)) ∈ Comp)
48 oveq2 7143 . . . . . . 7 (𝑣 = ((cls‘𝐽)‘𝑢) → (𝐽t 𝑣) = (𝐽t ((cls‘𝐽)‘𝑢)))
4948eleq1d 2874 . . . . . 6 (𝑣 = ((cls‘𝐽)‘𝑢) → ((𝐽t 𝑣) ∈ Comp ↔ (𝐽t ((cls‘𝐽)‘𝑢)) ∈ Comp))
5049rspcev 3571 . . . . 5 ((((cls‘𝐽)‘𝑢) ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝐽t ((cls‘𝐽)‘𝑢)) ∈ Comp) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp)
5142, 47, 50syl2anc 587 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp)
5224, 51rexlimddv 3250 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp)
5352ralrimivva 3156 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → ∀𝑥𝐽𝑦𝑥𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp)
54 isnlly 22074 . 2 (𝐽 ∈ 𝑛-Locally Comp ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp))
552, 53, 54sylanbrc 586 1 ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ 𝑛-Locally Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  {crab 3110  cdif 3878  cin 3880  wss 3881  𝒫 cpw 4497  {csn 4525   cuni 4800  cfv 6324  (class class class)co 7135  t crest 16686  Topctop 21498  Clsdccld 21621  clsccl 21623  neicnei 21702  Hauscha 21913  Compccmp 21991  𝑛-Locally cnlly 22070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-fin 8496  df-fi 8859  df-rest 16688  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cld 21624  df-cls 21626  df-nei 21703  df-haus 21920  df-cmp 21992  df-nlly 22072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator