MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsup2 Structured version   Visualization version   GIF version

Theorem volsup2 25640
Description: The volume of 𝐴 is the supremum of the sequence vol*‘(𝐴 ∩ (-𝑛[,]𝑛)) of volumes of bounded sets. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
volsup2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem volsup2
Dummy variables 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1139 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐵 < (vol‘𝐴))
2 rexr 11307 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
323ad2ant2 1135 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈ ℝ*)
4 iccssxr 13470 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
5 volf 25564 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
65ffvelcdmi 7103 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
74, 6sselid 3981 . . . . . . 7 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
873ad2ant1 1134 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) ∈ ℝ*)
9 xrltnle 11328 . . . . . 6 ((𝐵 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → (𝐵 < (vol‘𝐴) ↔ ¬ (vol‘𝐴) ≤ 𝐵))
103, 8, 9syl2anc 584 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝐵 < (vol‘𝐴) ↔ ¬ (vol‘𝐴) ≤ 𝐵))
111, 10mpbid 232 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ¬ (vol‘𝐴) ≤ 𝐵)
12 negeq 11500 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → -𝑚 = -𝑛)
13 id 22 . . . . . . . . . . . . . 14 (𝑚 = 𝑛𝑚 = 𝑛)
1412, 13oveq12d 7449 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (-𝑚[,]𝑚) = (-𝑛[,]𝑛))
1514ineq2d 4220 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐴 ∩ (-𝑚[,]𝑚)) = (𝐴 ∩ (-𝑛[,]𝑛)))
16 eqid 2737 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))
17 ovex 7464 . . . . . . . . . . . . 13 (-𝑛[,]𝑛) ∈ V
1817inex2 5318 . . . . . . . . . . . 12 (𝐴 ∩ (-𝑛[,]𝑛)) ∈ V
1915, 16, 18fvmpt 7016 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 ∩ (-𝑛[,]𝑛)))
2019iuneq2i 5013 . . . . . . . . . 10 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = 𝑛 ∈ ℕ (𝐴 ∩ (-𝑛[,]𝑛))
21 iunin2 5071 . . . . . . . . . 10 𝑛 ∈ ℕ (𝐴 ∩ (-𝑛[,]𝑛)) = (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛))
2220, 21eqtri 2765 . . . . . . . . 9 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛))
23 simpl1 1192 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
24 nnre 12273 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
2524adantl 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
2625renegcld 11690 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -𝑛 ∈ ℝ)
27 iccmbl 25601 . . . . . . . . . . . . . 14 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol)
2826, 25, 27syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (-𝑛[,]𝑛) ∈ dom vol)
29 inmbl 25577 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑛) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
3023, 28, 29syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
3115cbvmptv 5255 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = (𝑛 ∈ ℕ ↦ (𝐴 ∩ (-𝑛[,]𝑛)))
3230, 31fmptd 7134 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))):ℕ⟶dom vol)
3332ffnd 6737 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ)
34 fniunfv 7267 . . . . . . . . . 10 ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ → 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))
3533, 34syl 17 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))
36 mblss 25566 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
37363ad2ant1 1134 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐴 ⊆ ℝ)
3837sselda 3983 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
39 recn 11245 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4039abscld 15475 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
41 arch 12523 . . . . . . . . . . . . . . . 16 ((abs‘𝑥) ∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝑥) < 𝑛)
4240, 41syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝑥) < 𝑛)
43 ltle 11349 . . . . . . . . . . . . . . . . . 18 (((abs‘𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((abs‘𝑥) < 𝑛 → (abs‘𝑥) ≤ 𝑛))
4440, 24, 43syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) < 𝑛 → (abs‘𝑥) ≤ 𝑛))
45 id 22 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛) → (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛))
46453expib 1123 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ((-𝑛𝑥𝑥𝑛) → (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
4746adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((-𝑛𝑥𝑥𝑛) → (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
48 absle 15354 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((abs‘𝑥) ≤ 𝑛 ↔ (-𝑛𝑥𝑥𝑛)))
4924, 48sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) ≤ 𝑛 ↔ (-𝑛𝑥𝑥𝑛)))
5024adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
5150renegcld 11690 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → -𝑛 ∈ ℝ)
52 elicc2 13452 . . . . . . . . . . . . . . . . . . 19 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑥 ∈ (-𝑛[,]𝑛) ↔ (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
5351, 50, 52syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 ∈ (-𝑛[,]𝑛) ↔ (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
5447, 49, 533imtr4d 294 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) ≤ 𝑛𝑥 ∈ (-𝑛[,]𝑛)))
5544, 54syld 47 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) < 𝑛𝑥 ∈ (-𝑛[,]𝑛)))
5655reximdva 3168 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (∃𝑛 ∈ ℕ (abs‘𝑥) < 𝑛 → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛)))
5742, 56mpd 15 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛))
5838, 57syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑥𝐴) → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛))
5958ex 412 . . . . . . . . . . . 12 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑥𝐴 → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛)))
60 eliun 4995 . . . . . . . . . . . 12 (𝑥 𝑛 ∈ ℕ (-𝑛[,]𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛))
6159, 60imbitrrdi 252 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑥𝐴𝑥 𝑛 ∈ ℕ (-𝑛[,]𝑛)))
6261ssrdv 3989 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛))
63 dfss2 3969 . . . . . . . . . 10 (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛) ↔ (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛)) = 𝐴)
6462, 63sylib 218 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛)) = 𝐴)
6522, 35, 643eqtr3a 2801 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = 𝐴)
6665fveq2d 6910 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = (vol‘𝐴))
67 peano2re 11434 . . . . . . . . . . . . . 14 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
6825, 67syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ)
6968renegcld 11690 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -(𝑛 + 1) ∈ ℝ)
7025lep1d 12199 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑛 ≤ (𝑛 + 1))
7125, 68lenegd 11842 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 ≤ (𝑛 + 1) ↔ -(𝑛 + 1) ≤ -𝑛))
7270, 71mpbid 232 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -(𝑛 + 1) ≤ -𝑛)
73 iccss 13455 . . . . . . . . . . . 12 (((-(𝑛 + 1) ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ) ∧ (-(𝑛 + 1) ≤ -𝑛𝑛 ≤ (𝑛 + 1))) → (-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1)))
7469, 68, 72, 70, 73syl22anc 839 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1)))
75 sslin 4243 . . . . . . . . . . 11 ((-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1)) → (𝐴 ∩ (-𝑛[,]𝑛)) ⊆ (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
7674, 75syl 17 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐴 ∩ (-𝑛[,]𝑛)) ⊆ (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
7719adantl 481 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 ∩ (-𝑛[,]𝑛)))
78 peano2nn 12278 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
7978adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
80 negeq 11500 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → -𝑚 = -(𝑛 + 1))
81 id 22 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → 𝑚 = (𝑛 + 1))
8280, 81oveq12d 7449 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (-𝑚[,]𝑚) = (-(𝑛 + 1)[,](𝑛 + 1)))
8382ineq2d 4220 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝐴 ∩ (-𝑚[,]𝑚)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
84 ovex 7464 . . . . . . . . . . . . 13 (-(𝑛 + 1)[,](𝑛 + 1)) ∈ V
8584inex2 5318 . . . . . . . . . . . 12 (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))) ∈ V
8683, 16, 85fvmpt 7016 . . . . . . . . . . 11 ((𝑛 + 1) ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
8779, 86syl 17 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
8876, 77, 873sstr4d 4039 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)))
8988ralrimiva 3146 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)))
90 volsup 25591 . . . . . . . 8 (((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))):ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1))) → (vol‘ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ))
9132, 89, 90syl2anc 584 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ))
9266, 91eqtr3d 2779 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ))
9392breq1d 5153 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ((vol‘𝐴) ≤ 𝐵 ↔ sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵))
94 imassrn 6089 . . . . . . 7 (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) ⊆ ran vol
95 frn 6743 . . . . . . . . 9 (vol:dom vol⟶(0[,]+∞) → ran vol ⊆ (0[,]+∞))
965, 95ax-mp 5 . . . . . . . 8 ran vol ⊆ (0[,]+∞)
9796, 4sstri 3993 . . . . . . 7 ran vol ⊆ ℝ*
9894, 97sstri 3993 . . . . . 6 (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) ⊆ ℝ*
99 supxrleub 13368 . . . . . 6 (((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) ⊆ ℝ*𝐵 ∈ ℝ*) → (sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵))
10098, 3, 99sylancr 587 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵))
101 ffn 6736 . . . . . . . 8 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
1025, 101ax-mp 5 . . . . . . 7 vol Fn dom vol
10332frnd 6744 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) ⊆ dom vol)
104 breq1 5146 . . . . . . . 8 (𝑛 = (vol‘𝑧) → (𝑛𝐵 ↔ (vol‘𝑧) ≤ 𝐵))
105104ralima 7257 . . . . . . 7 ((vol Fn dom vol ∧ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) ⊆ dom vol) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵 ↔ ∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵))
106102, 103, 105sylancr 587 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵 ↔ ∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵))
107 fveq2 6906 . . . . . . . . . 10 (𝑧 = ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) → (vol‘𝑧) = (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)))
108107breq1d 5153 . . . . . . . . 9 (𝑧 = ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) → ((vol‘𝑧) ≤ 𝐵 ↔ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵))
109108ralrn 7108 . . . . . . . 8 ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵))
11033, 109syl 17 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵))
11119fveq2d 6910 . . . . . . . . 9 (𝑛 ∈ ℕ → (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
112111breq1d 5153 . . . . . . . 8 (𝑛 ∈ ℕ → ((vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
113112ralbiia 3091 . . . . . . 7 (∀𝑛 ∈ ℕ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
114110, 113bitrdi 287 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
115106, 114bitrd 279 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
11693, 100, 1153bitrd 305 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ((vol‘𝐴) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
11711, 116mtbid 324 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ¬ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
118 rexnal 3100 . . 3 (∃𝑛 ∈ ℕ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵 ↔ ¬ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
119117, 118sylibr 234 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
1203adantr 480 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
1215ffvelcdmi 7103 . . . . . 6 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ (0[,]+∞))
1224, 121sselid 3981 . . . . 5 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
12330, 122syl 17 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
124 xrltnle 11328 . . . 4 ((𝐵 ∈ ℝ* ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*) → (𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
125120, 123, 124syl2anc 584 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
126125rexbidva 3177 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ∃𝑛 ∈ ℕ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
127119, 126mpbird 257 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  cin 3950  wss 3951   cuni 4907   ciun 4991   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  supcsup 9480  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  -cneg 11493  cn 12266  [,]cicc 13390  abscabs 15273  volcvol 25498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xadd 13155  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-xmet 21357  df-met 21358  df-ovol 25499  df-vol 25500
This theorem is referenced by:  volivth  25642
  Copyright terms: Public domain W3C validator