MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsup2 Structured version   Visualization version   GIF version

Theorem volsup2 25556
Description: The volume of 𝐴 is the supremum of the sequence vol*‘(𝐴 ∩ (-𝑛[,]𝑛)) of volumes of bounded sets. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
volsup2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem volsup2
Dummy variables 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐵 < (vol‘𝐴))
2 rexr 11279 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
323ad2ant2 1134 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈ ℝ*)
4 iccssxr 13445 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
5 volf 25480 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
65ffvelcdmi 7072 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
74, 6sselid 3956 . . . . . . 7 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
873ad2ant1 1133 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) ∈ ℝ*)
9 xrltnle 11300 . . . . . 6 ((𝐵 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → (𝐵 < (vol‘𝐴) ↔ ¬ (vol‘𝐴) ≤ 𝐵))
103, 8, 9syl2anc 584 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝐵 < (vol‘𝐴) ↔ ¬ (vol‘𝐴) ≤ 𝐵))
111, 10mpbid 232 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ¬ (vol‘𝐴) ≤ 𝐵)
12 negeq 11472 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → -𝑚 = -𝑛)
13 id 22 . . . . . . . . . . . . . 14 (𝑚 = 𝑛𝑚 = 𝑛)
1412, 13oveq12d 7421 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (-𝑚[,]𝑚) = (-𝑛[,]𝑛))
1514ineq2d 4195 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐴 ∩ (-𝑚[,]𝑚)) = (𝐴 ∩ (-𝑛[,]𝑛)))
16 eqid 2735 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))
17 ovex 7436 . . . . . . . . . . . . 13 (-𝑛[,]𝑛) ∈ V
1817inex2 5288 . . . . . . . . . . . 12 (𝐴 ∩ (-𝑛[,]𝑛)) ∈ V
1915, 16, 18fvmpt 6985 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 ∩ (-𝑛[,]𝑛)))
2019iuneq2i 4989 . . . . . . . . . 10 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = 𝑛 ∈ ℕ (𝐴 ∩ (-𝑛[,]𝑛))
21 iunin2 5047 . . . . . . . . . 10 𝑛 ∈ ℕ (𝐴 ∩ (-𝑛[,]𝑛)) = (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛))
2220, 21eqtri 2758 . . . . . . . . 9 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛))
23 simpl1 1192 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
24 nnre 12245 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
2524adantl 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
2625renegcld 11662 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -𝑛 ∈ ℝ)
27 iccmbl 25517 . . . . . . . . . . . . . 14 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol)
2826, 25, 27syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (-𝑛[,]𝑛) ∈ dom vol)
29 inmbl 25493 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑛) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
3023, 28, 29syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
3115cbvmptv 5225 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = (𝑛 ∈ ℕ ↦ (𝐴 ∩ (-𝑛[,]𝑛)))
3230, 31fmptd 7103 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))):ℕ⟶dom vol)
3332ffnd 6706 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ)
34 fniunfv 7238 . . . . . . . . . 10 ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ → 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))
3533, 34syl 17 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))
36 mblss 25482 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
37363ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐴 ⊆ ℝ)
3837sselda 3958 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
39 recn 11217 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4039abscld 15453 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
41 arch 12496 . . . . . . . . . . . . . . . 16 ((abs‘𝑥) ∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝑥) < 𝑛)
4240, 41syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝑥) < 𝑛)
43 ltle 11321 . . . . . . . . . . . . . . . . . 18 (((abs‘𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((abs‘𝑥) < 𝑛 → (abs‘𝑥) ≤ 𝑛))
4440, 24, 43syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) < 𝑛 → (abs‘𝑥) ≤ 𝑛))
45 id 22 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛) → (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛))
46453expib 1122 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ((-𝑛𝑥𝑥𝑛) → (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
4746adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((-𝑛𝑥𝑥𝑛) → (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
48 absle 15332 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((abs‘𝑥) ≤ 𝑛 ↔ (-𝑛𝑥𝑥𝑛)))
4924, 48sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) ≤ 𝑛 ↔ (-𝑛𝑥𝑥𝑛)))
5024adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
5150renegcld 11662 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → -𝑛 ∈ ℝ)
52 elicc2 13426 . . . . . . . . . . . . . . . . . . 19 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑥 ∈ (-𝑛[,]𝑛) ↔ (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
5351, 50, 52syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 ∈ (-𝑛[,]𝑛) ↔ (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
5447, 49, 533imtr4d 294 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) ≤ 𝑛𝑥 ∈ (-𝑛[,]𝑛)))
5544, 54syld 47 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) < 𝑛𝑥 ∈ (-𝑛[,]𝑛)))
5655reximdva 3153 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (∃𝑛 ∈ ℕ (abs‘𝑥) < 𝑛 → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛)))
5742, 56mpd 15 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛))
5838, 57syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑥𝐴) → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛))
5958ex 412 . . . . . . . . . . . 12 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑥𝐴 → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛)))
60 eliun 4971 . . . . . . . . . . . 12 (𝑥 𝑛 ∈ ℕ (-𝑛[,]𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛))
6159, 60imbitrrdi 252 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑥𝐴𝑥 𝑛 ∈ ℕ (-𝑛[,]𝑛)))
6261ssrdv 3964 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛))
63 dfss2 3944 . . . . . . . . . 10 (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛) ↔ (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛)) = 𝐴)
6462, 63sylib 218 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛)) = 𝐴)
6522, 35, 643eqtr3a 2794 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = 𝐴)
6665fveq2d 6879 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = (vol‘𝐴))
67 peano2re 11406 . . . . . . . . . . . . . 14 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
6825, 67syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ)
6968renegcld 11662 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -(𝑛 + 1) ∈ ℝ)
7025lep1d 12171 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑛 ≤ (𝑛 + 1))
7125, 68lenegd 11814 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 ≤ (𝑛 + 1) ↔ -(𝑛 + 1) ≤ -𝑛))
7270, 71mpbid 232 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -(𝑛 + 1) ≤ -𝑛)
73 iccss 13429 . . . . . . . . . . . 12 (((-(𝑛 + 1) ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ) ∧ (-(𝑛 + 1) ≤ -𝑛𝑛 ≤ (𝑛 + 1))) → (-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1)))
7469, 68, 72, 70, 73syl22anc 838 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1)))
75 sslin 4218 . . . . . . . . . . 11 ((-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1)) → (𝐴 ∩ (-𝑛[,]𝑛)) ⊆ (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
7674, 75syl 17 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐴 ∩ (-𝑛[,]𝑛)) ⊆ (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
7719adantl 481 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 ∩ (-𝑛[,]𝑛)))
78 peano2nn 12250 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
7978adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
80 negeq 11472 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → -𝑚 = -(𝑛 + 1))
81 id 22 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → 𝑚 = (𝑛 + 1))
8280, 81oveq12d 7421 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (-𝑚[,]𝑚) = (-(𝑛 + 1)[,](𝑛 + 1)))
8382ineq2d 4195 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝐴 ∩ (-𝑚[,]𝑚)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
84 ovex 7436 . . . . . . . . . . . . 13 (-(𝑛 + 1)[,](𝑛 + 1)) ∈ V
8584inex2 5288 . . . . . . . . . . . 12 (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))) ∈ V
8683, 16, 85fvmpt 6985 . . . . . . . . . . 11 ((𝑛 + 1) ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
8779, 86syl 17 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
8876, 77, 873sstr4d 4014 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)))
8988ralrimiva 3132 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)))
90 volsup 25507 . . . . . . . 8 (((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))):ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1))) → (vol‘ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ))
9132, 89, 90syl2anc 584 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ))
9266, 91eqtr3d 2772 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ))
9392breq1d 5129 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ((vol‘𝐴) ≤ 𝐵 ↔ sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵))
94 imassrn 6058 . . . . . . 7 (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) ⊆ ran vol
95 frn 6712 . . . . . . . . 9 (vol:dom vol⟶(0[,]+∞) → ran vol ⊆ (0[,]+∞))
965, 95ax-mp 5 . . . . . . . 8 ran vol ⊆ (0[,]+∞)
9796, 4sstri 3968 . . . . . . 7 ran vol ⊆ ℝ*
9894, 97sstri 3968 . . . . . 6 (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) ⊆ ℝ*
99 supxrleub 13340 . . . . . 6 (((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) ⊆ ℝ*𝐵 ∈ ℝ*) → (sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵))
10098, 3, 99sylancr 587 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵))
101 ffn 6705 . . . . . . . 8 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
1025, 101ax-mp 5 . . . . . . 7 vol Fn dom vol
10332frnd 6713 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) ⊆ dom vol)
104 breq1 5122 . . . . . . . 8 (𝑛 = (vol‘𝑧) → (𝑛𝐵 ↔ (vol‘𝑧) ≤ 𝐵))
105104ralima 7228 . . . . . . 7 ((vol Fn dom vol ∧ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) ⊆ dom vol) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵 ↔ ∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵))
106102, 103, 105sylancr 587 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵 ↔ ∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵))
107 fveq2 6875 . . . . . . . . . 10 (𝑧 = ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) → (vol‘𝑧) = (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)))
108107breq1d 5129 . . . . . . . . 9 (𝑧 = ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) → ((vol‘𝑧) ≤ 𝐵 ↔ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵))
109108ralrn 7077 . . . . . . . 8 ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵))
11033, 109syl 17 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵))
11119fveq2d 6879 . . . . . . . . 9 (𝑛 ∈ ℕ → (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
112111breq1d 5129 . . . . . . . 8 (𝑛 ∈ ℕ → ((vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
113112ralbiia 3080 . . . . . . 7 (∀𝑛 ∈ ℕ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
114110, 113bitrdi 287 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
115106, 114bitrd 279 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
11693, 100, 1153bitrd 305 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ((vol‘𝐴) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
11711, 116mtbid 324 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ¬ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
118 rexnal 3089 . . 3 (∃𝑛 ∈ ℕ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵 ↔ ¬ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
119117, 118sylibr 234 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
1203adantr 480 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
1215ffvelcdmi 7072 . . . . . 6 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ (0[,]+∞))
1224, 121sselid 3956 . . . . 5 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
12330, 122syl 17 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
124 xrltnle 11300 . . . 4 ((𝐵 ∈ ℝ* ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*) → (𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
125120, 123, 124syl2anc 584 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
126125rexbidva 3162 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ∃𝑛 ∈ ℕ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
127119, 126mpbird 257 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cin 3925  wss 3926   cuni 4883   ciun 4967   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  cima 5657   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  supcsup 9450  cr 11126  0cc0 11127  1c1 11128   + caddc 11130  +∞cpnf 11264  *cxr 11266   < clt 11267  cle 11268  -cneg 11465  cn 12238  [,]cicc 13363  abscabs 15251  volcvol 25414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xadd 13127  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-xmet 21306  df-met 21307  df-ovol 25415  df-vol 25416
This theorem is referenced by:  volivth  25558
  Copyright terms: Public domain W3C validator