MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsup2 Structured version   Visualization version   GIF version

Theorem volsup2 25506
Description: The volume of 𝐴 is the supremum of the sequence vol*‘(𝐴 ∩ (-𝑛[,]𝑛)) of volumes of bounded sets. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
volsup2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem volsup2
Dummy variables 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐵 < (vol‘𝐴))
2 rexr 11220 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
323ad2ant2 1134 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈ ℝ*)
4 iccssxr 13391 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
5 volf 25430 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
65ffvelcdmi 7055 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
74, 6sselid 3944 . . . . . . 7 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
873ad2ant1 1133 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) ∈ ℝ*)
9 xrltnle 11241 . . . . . 6 ((𝐵 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → (𝐵 < (vol‘𝐴) ↔ ¬ (vol‘𝐴) ≤ 𝐵))
103, 8, 9syl2anc 584 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝐵 < (vol‘𝐴) ↔ ¬ (vol‘𝐴) ≤ 𝐵))
111, 10mpbid 232 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ¬ (vol‘𝐴) ≤ 𝐵)
12 negeq 11413 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → -𝑚 = -𝑛)
13 id 22 . . . . . . . . . . . . . 14 (𝑚 = 𝑛𝑚 = 𝑛)
1412, 13oveq12d 7405 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (-𝑚[,]𝑚) = (-𝑛[,]𝑛))
1514ineq2d 4183 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐴 ∩ (-𝑚[,]𝑚)) = (𝐴 ∩ (-𝑛[,]𝑛)))
16 eqid 2729 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))
17 ovex 7420 . . . . . . . . . . . . 13 (-𝑛[,]𝑛) ∈ V
1817inex2 5273 . . . . . . . . . . . 12 (𝐴 ∩ (-𝑛[,]𝑛)) ∈ V
1915, 16, 18fvmpt 6968 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 ∩ (-𝑛[,]𝑛)))
2019iuneq2i 4977 . . . . . . . . . 10 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = 𝑛 ∈ ℕ (𝐴 ∩ (-𝑛[,]𝑛))
21 iunin2 5035 . . . . . . . . . 10 𝑛 ∈ ℕ (𝐴 ∩ (-𝑛[,]𝑛)) = (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛))
2220, 21eqtri 2752 . . . . . . . . 9 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛))
23 simpl1 1192 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
24 nnre 12193 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
2524adantl 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
2625renegcld 11605 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -𝑛 ∈ ℝ)
27 iccmbl 25467 . . . . . . . . . . . . . 14 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol)
2826, 25, 27syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (-𝑛[,]𝑛) ∈ dom vol)
29 inmbl 25443 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑛) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
3023, 28, 29syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
3115cbvmptv 5211 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = (𝑛 ∈ ℕ ↦ (𝐴 ∩ (-𝑛[,]𝑛)))
3230, 31fmptd 7086 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))):ℕ⟶dom vol)
3332ffnd 6689 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ)
34 fniunfv 7221 . . . . . . . . . 10 ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ → 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))
3533, 34syl 17 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))
36 mblss 25432 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
37363ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐴 ⊆ ℝ)
3837sselda 3946 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
39 recn 11158 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4039abscld 15405 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
41 arch 12439 . . . . . . . . . . . . . . . 16 ((abs‘𝑥) ∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝑥) < 𝑛)
4240, 41syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝑥) < 𝑛)
43 ltle 11262 . . . . . . . . . . . . . . . . . 18 (((abs‘𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((abs‘𝑥) < 𝑛 → (abs‘𝑥) ≤ 𝑛))
4440, 24, 43syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) < 𝑛 → (abs‘𝑥) ≤ 𝑛))
45 id 22 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛) → (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛))
46453expib 1122 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ((-𝑛𝑥𝑥𝑛) → (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
4746adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((-𝑛𝑥𝑥𝑛) → (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
48 absle 15282 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((abs‘𝑥) ≤ 𝑛 ↔ (-𝑛𝑥𝑥𝑛)))
4924, 48sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) ≤ 𝑛 ↔ (-𝑛𝑥𝑥𝑛)))
5024adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
5150renegcld 11605 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → -𝑛 ∈ ℝ)
52 elicc2 13372 . . . . . . . . . . . . . . . . . . 19 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑥 ∈ (-𝑛[,]𝑛) ↔ (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
5351, 50, 52syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 ∈ (-𝑛[,]𝑛) ↔ (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
5447, 49, 533imtr4d 294 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) ≤ 𝑛𝑥 ∈ (-𝑛[,]𝑛)))
5544, 54syld 47 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) < 𝑛𝑥 ∈ (-𝑛[,]𝑛)))
5655reximdva 3146 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (∃𝑛 ∈ ℕ (abs‘𝑥) < 𝑛 → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛)))
5742, 56mpd 15 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛))
5838, 57syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑥𝐴) → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛))
5958ex 412 . . . . . . . . . . . 12 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑥𝐴 → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛)))
60 eliun 4959 . . . . . . . . . . . 12 (𝑥 𝑛 ∈ ℕ (-𝑛[,]𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛))
6159, 60imbitrrdi 252 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑥𝐴𝑥 𝑛 ∈ ℕ (-𝑛[,]𝑛)))
6261ssrdv 3952 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛))
63 dfss2 3932 . . . . . . . . . 10 (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛) ↔ (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛)) = 𝐴)
6462, 63sylib 218 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛)) = 𝐴)
6522, 35, 643eqtr3a 2788 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = 𝐴)
6665fveq2d 6862 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = (vol‘𝐴))
67 peano2re 11347 . . . . . . . . . . . . . 14 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
6825, 67syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ)
6968renegcld 11605 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -(𝑛 + 1) ∈ ℝ)
7025lep1d 12114 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑛 ≤ (𝑛 + 1))
7125, 68lenegd 11757 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 ≤ (𝑛 + 1) ↔ -(𝑛 + 1) ≤ -𝑛))
7270, 71mpbid 232 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -(𝑛 + 1) ≤ -𝑛)
73 iccss 13375 . . . . . . . . . . . 12 (((-(𝑛 + 1) ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ) ∧ (-(𝑛 + 1) ≤ -𝑛𝑛 ≤ (𝑛 + 1))) → (-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1)))
7469, 68, 72, 70, 73syl22anc 838 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1)))
75 sslin 4206 . . . . . . . . . . 11 ((-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1)) → (𝐴 ∩ (-𝑛[,]𝑛)) ⊆ (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
7674, 75syl 17 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐴 ∩ (-𝑛[,]𝑛)) ⊆ (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
7719adantl 481 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 ∩ (-𝑛[,]𝑛)))
78 peano2nn 12198 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
7978adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
80 negeq 11413 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → -𝑚 = -(𝑛 + 1))
81 id 22 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → 𝑚 = (𝑛 + 1))
8280, 81oveq12d 7405 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (-𝑚[,]𝑚) = (-(𝑛 + 1)[,](𝑛 + 1)))
8382ineq2d 4183 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝐴 ∩ (-𝑚[,]𝑚)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
84 ovex 7420 . . . . . . . . . . . . 13 (-(𝑛 + 1)[,](𝑛 + 1)) ∈ V
8584inex2 5273 . . . . . . . . . . . 12 (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))) ∈ V
8683, 16, 85fvmpt 6968 . . . . . . . . . . 11 ((𝑛 + 1) ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
8779, 86syl 17 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
8876, 77, 873sstr4d 4002 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)))
8988ralrimiva 3125 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)))
90 volsup 25457 . . . . . . . 8 (((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))):ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1))) → (vol‘ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ))
9132, 89, 90syl2anc 584 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ))
9266, 91eqtr3d 2766 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ))
9392breq1d 5117 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ((vol‘𝐴) ≤ 𝐵 ↔ sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵))
94 imassrn 6042 . . . . . . 7 (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) ⊆ ran vol
95 frn 6695 . . . . . . . . 9 (vol:dom vol⟶(0[,]+∞) → ran vol ⊆ (0[,]+∞))
965, 95ax-mp 5 . . . . . . . 8 ran vol ⊆ (0[,]+∞)
9796, 4sstri 3956 . . . . . . 7 ran vol ⊆ ℝ*
9894, 97sstri 3956 . . . . . 6 (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) ⊆ ℝ*
99 supxrleub 13286 . . . . . 6 (((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) ⊆ ℝ*𝐵 ∈ ℝ*) → (sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵))
10098, 3, 99sylancr 587 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵))
101 ffn 6688 . . . . . . . 8 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
1025, 101ax-mp 5 . . . . . . 7 vol Fn dom vol
10332frnd 6696 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) ⊆ dom vol)
104 breq1 5110 . . . . . . . 8 (𝑛 = (vol‘𝑧) → (𝑛𝐵 ↔ (vol‘𝑧) ≤ 𝐵))
105104ralima 7211 . . . . . . 7 ((vol Fn dom vol ∧ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) ⊆ dom vol) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵 ↔ ∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵))
106102, 103, 105sylancr 587 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵 ↔ ∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵))
107 fveq2 6858 . . . . . . . . . 10 (𝑧 = ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) → (vol‘𝑧) = (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)))
108107breq1d 5117 . . . . . . . . 9 (𝑧 = ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) → ((vol‘𝑧) ≤ 𝐵 ↔ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵))
109108ralrn 7060 . . . . . . . 8 ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵))
11033, 109syl 17 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵))
11119fveq2d 6862 . . . . . . . . 9 (𝑛 ∈ ℕ → (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
112111breq1d 5117 . . . . . . . 8 (𝑛 ∈ ℕ → ((vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
113112ralbiia 3073 . . . . . . 7 (∀𝑛 ∈ ℕ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
114110, 113bitrdi 287 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
115106, 114bitrd 279 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
11693, 100, 1153bitrd 305 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ((vol‘𝐴) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
11711, 116mtbid 324 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ¬ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
118 rexnal 3082 . . 3 (∃𝑛 ∈ ℕ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵 ↔ ¬ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
119117, 118sylibr 234 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
1203adantr 480 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
1215ffvelcdmi 7055 . . . . . 6 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ (0[,]+∞))
1224, 121sselid 3944 . . . . 5 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
12330, 122syl 17 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
124 xrltnle 11241 . . . 4 ((𝐵 ∈ ℝ* ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*) → (𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
125120, 123, 124syl2anc 584 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
126125rexbidva 3155 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ∃𝑛 ∈ ℕ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
127119, 126mpbird 257 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3913  wss 3914   cuni 4871   ciun 4955   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  supcsup 9391  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  -cneg 11406  cn 12186  [,]cicc 13309  abscabs 15200  volcvol 25364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xadd 13073  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-xmet 21257  df-met 21258  df-ovol 25365  df-vol 25366
This theorem is referenced by:  volivth  25508
  Copyright terms: Public domain W3C validator