Step | Hyp | Ref
| Expression |
1 | | simp3 1135 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐵 < (vol‘𝐴)) |
2 | | rexr 10725 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
3 | 2 | 3ad2ant2 1131 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈
ℝ*) |
4 | | iccssxr 12862 |
. . . . . . . 8
⊢
(0[,]+∞) ⊆ ℝ* |
5 | | volf 24229 |
. . . . . . . . 9
⊢ vol:dom
vol⟶(0[,]+∞) |
6 | 5 | ffvelrni 6841 |
. . . . . . . 8
⊢ (𝐴 ∈ dom vol →
(vol‘𝐴) ∈
(0[,]+∞)) |
7 | 4, 6 | sseldi 3890 |
. . . . . . 7
⊢ (𝐴 ∈ dom vol →
(vol‘𝐴) ∈
ℝ*) |
8 | 7 | 3ad2ant1 1130 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) ∈
ℝ*) |
9 | | xrltnle 10746 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ*
∧ (vol‘𝐴) ∈
ℝ*) → (𝐵 < (vol‘𝐴) ↔ ¬ (vol‘𝐴) ≤ 𝐵)) |
10 | 3, 8, 9 | syl2anc 587 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝐵 < (vol‘𝐴) ↔ ¬ (vol‘𝐴) ≤ 𝐵)) |
11 | 1, 10 | mpbid 235 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ¬ (vol‘𝐴) ≤ 𝐵) |
12 | | negeq 10916 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → -𝑚 = -𝑛) |
13 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → 𝑚 = 𝑛) |
14 | 12, 13 | oveq12d 7168 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → (-𝑚[,]𝑚) = (-𝑛[,]𝑛)) |
15 | 14 | ineq2d 4117 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (𝐴 ∩ (-𝑚[,]𝑚)) = (𝐴 ∩ (-𝑛[,]𝑛))) |
16 | | eqid 2758 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) |
17 | | ovex 7183 |
. . . . . . . . . . . . 13
⊢ (-𝑛[,]𝑛) ∈ V |
18 | 17 | inex2 5188 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ (-𝑛[,]𝑛)) ∈ V |
19 | 15, 16, 18 | fvmpt 6759 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 ∩ (-𝑛[,]𝑛))) |
20 | 19 | iuneq2i 4904 |
. . . . . . . . . 10
⊢ ∪ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = ∪ 𝑛 ∈ ℕ (𝐴 ∩ (-𝑛[,]𝑛)) |
21 | | iunin2 4958 |
. . . . . . . . . 10
⊢ ∪ 𝑛 ∈ ℕ (𝐴 ∩ (-𝑛[,]𝑛)) = (𝐴 ∩ ∪
𝑛 ∈ ℕ (-𝑛[,]𝑛)) |
22 | 20, 21 | eqtri 2781 |
. . . . . . . . 9
⊢ ∪ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 ∩ ∪
𝑛 ∈ ℕ (-𝑛[,]𝑛)) |
23 | | simpl1 1188 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ dom vol) |
24 | | nnre 11681 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
25 | 24 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ) |
26 | 25 | renegcld 11105 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -𝑛 ∈ ℝ) |
27 | | iccmbl 24266 |
. . . . . . . . . . . . . 14
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol) |
28 | 26, 25, 27 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (-𝑛[,]𝑛) ∈ dom vol) |
29 | | inmbl 24242 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑛) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol) |
30 | 23, 28, 29 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol) |
31 | 15 | cbvmptv 5135 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = (𝑛 ∈ ℕ ↦ (𝐴 ∩ (-𝑛[,]𝑛))) |
32 | 30, 31 | fmptd 6869 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))):ℕ⟶dom vol) |
33 | 32 | ffnd 6499 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ) |
34 | | fniunfv 6998 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ → ∪ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = ∪ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) |
35 | 33, 34 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∪ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = ∪ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) |
36 | | mblss 24231 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) |
37 | 36 | 3ad2ant1 1130 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐴 ⊆ ℝ) |
38 | 37 | sselda 3892 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
39 | | recn 10665 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
40 | 39 | abscld 14844 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ →
(abs‘𝑥) ∈
ℝ) |
41 | | arch 11931 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘𝑥)
∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝑥) < 𝑛) |
42 | 40, 41 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ →
∃𝑛 ∈ ℕ
(abs‘𝑥) < 𝑛) |
43 | | ltle 10767 |
. . . . . . . . . . . . . . . . . 18
⊢
(((abs‘𝑥)
∈ ℝ ∧ 𝑛
∈ ℝ) → ((abs‘𝑥) < 𝑛 → (abs‘𝑥) ≤ 𝑛)) |
44 | 40, 24, 43 | syl2an 598 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) →
((abs‘𝑥) < 𝑛 → (abs‘𝑥) ≤ 𝑛)) |
45 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℝ ∧ -𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛) → (𝑥 ∈ ℝ ∧ -𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛)) |
46 | 45 | 3expib 1119 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ → ((-𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛) → (𝑥 ∈ ℝ ∧ -𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛))) |
47 | 46 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((-𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛) → (𝑥 ∈ ℝ ∧ -𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛))) |
48 | | absle 14723 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) →
((abs‘𝑥) ≤ 𝑛 ↔ (-𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛))) |
49 | 24, 48 | sylan2 595 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) →
((abs‘𝑥) ≤ 𝑛 ↔ (-𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛))) |
50 | 24 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈
ℝ) |
51 | 50 | renegcld 11105 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → -𝑛 ∈
ℝ) |
52 | | elicc2 12844 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑥 ∈ (-𝑛[,]𝑛) ↔ (𝑥 ∈ ℝ ∧ -𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛))) |
53 | 51, 50, 52 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 ∈ (-𝑛[,]𝑛) ↔ (𝑥 ∈ ℝ ∧ -𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛))) |
54 | 47, 49, 53 | 3imtr4d 297 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) →
((abs‘𝑥) ≤ 𝑛 → 𝑥 ∈ (-𝑛[,]𝑛))) |
55 | 44, 54 | syld 47 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) →
((abs‘𝑥) < 𝑛 → 𝑥 ∈ (-𝑛[,]𝑛))) |
56 | 55 | reximdva 3198 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ →
(∃𝑛 ∈ ℕ
(abs‘𝑥) < 𝑛 → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛))) |
57 | 42, 56 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ →
∃𝑛 ∈ ℕ
𝑥 ∈ (-𝑛[,]𝑛)) |
58 | 38, 57 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑥 ∈ 𝐴) → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛)) |
59 | 58 | ex 416 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑥 ∈ 𝐴 → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛))) |
60 | | eliun 4887 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ∪ 𝑛 ∈ ℕ (-𝑛[,]𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛)) |
61 | 59, 60 | syl6ibr 255 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪
𝑛 ∈ ℕ (-𝑛[,]𝑛))) |
62 | 61 | ssrdv 3898 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐴 ⊆ ∪
𝑛 ∈ ℕ (-𝑛[,]𝑛)) |
63 | | df-ss 3875 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ∪ 𝑛 ∈ ℕ (-𝑛[,]𝑛) ↔ (𝐴 ∩ ∪
𝑛 ∈ ℕ (-𝑛[,]𝑛)) = 𝐴) |
64 | 62, 63 | sylib 221 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝐴 ∩ ∪
𝑛 ∈ ℕ (-𝑛[,]𝑛)) = 𝐴) |
65 | 22, 35, 64 | 3eqtr3a 2817 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∪ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = 𝐴) |
66 | 65 | fveq2d 6662 |
. . . . . . 7
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘∪ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = (vol‘𝐴)) |
67 | | peano2re 10851 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℝ → (𝑛 + 1) ∈
ℝ) |
68 | 25, 67 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ) |
69 | 68 | renegcld 11105 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -(𝑛 + 1) ∈ ℝ) |
70 | 25 | lep1d 11609 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑛 ≤ (𝑛 + 1)) |
71 | 25, 68 | lenegd 11257 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 ≤ (𝑛 + 1) ↔ -(𝑛 + 1) ≤ -𝑛)) |
72 | 70, 71 | mpbid 235 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -(𝑛 + 1) ≤ -𝑛) |
73 | | iccss 12847 |
. . . . . . . . . . . 12
⊢
(((-(𝑛 + 1) ∈
ℝ ∧ (𝑛 + 1)
∈ ℝ) ∧ (-(𝑛
+ 1) ≤ -𝑛 ∧ 𝑛 ≤ (𝑛 + 1))) → (-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1))) |
74 | 69, 68, 72, 70, 73 | syl22anc 837 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1))) |
75 | | sslin 4139 |
. . . . . . . . . . 11
⊢ ((-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1)) → (𝐴 ∩ (-𝑛[,]𝑛)) ⊆ (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1)))) |
76 | 74, 75 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐴 ∩ (-𝑛[,]𝑛)) ⊆ (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1)))) |
77 | 19 | adantl 485 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 ∩ (-𝑛[,]𝑛))) |
78 | | peano2nn 11686 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
79 | 78 | adantl 485 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ) |
80 | | negeq 10916 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑛 + 1) → -𝑚 = -(𝑛 + 1)) |
81 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑛 + 1) → 𝑚 = (𝑛 + 1)) |
82 | 80, 81 | oveq12d 7168 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑛 + 1) → (-𝑚[,]𝑚) = (-(𝑛 + 1)[,](𝑛 + 1))) |
83 | 82 | ineq2d 4117 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑛 + 1) → (𝐴 ∩ (-𝑚[,]𝑚)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1)))) |
84 | | ovex 7183 |
. . . . . . . . . . . . 13
⊢ (-(𝑛 + 1)[,](𝑛 + 1)) ∈ V |
85 | 84 | inex2 5188 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))) ∈ V |
86 | 83, 16, 85 | fvmpt 6759 |
. . . . . . . . . . 11
⊢ ((𝑛 + 1) ∈ ℕ →
((𝑚 ∈ ℕ ↦
(𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1)))) |
87 | 79, 86 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1)))) |
88 | 76, 77, 87 | 3sstr4d 3939 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1))) |
89 | 88 | ralrimiva 3113 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1))) |
90 | | volsup 24256 |
. . . . . . . 8
⊢ (((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))):ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
((𝑚 ∈ ℕ ↦
(𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1))) → (vol‘∪ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, <
)) |
91 | 32, 89, 90 | syl2anc 587 |
. . . . . . 7
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘∪ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, <
)) |
92 | 66, 91 | eqtr3d 2795 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, <
)) |
93 | 92 | breq1d 5042 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ((vol‘𝐴) ≤ 𝐵 ↔ sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵)) |
94 | | imassrn 5912 |
. . . . . . 7
⊢ (vol
“ ran (𝑚 ∈
ℕ ↦ (𝐴 ∩
(-𝑚[,]𝑚)))) ⊆ ran vol |
95 | | frn 6504 |
. . . . . . . . 9
⊢ (vol:dom
vol⟶(0[,]+∞) → ran vol ⊆
(0[,]+∞)) |
96 | 5, 95 | ax-mp 5 |
. . . . . . . 8
⊢ ran vol
⊆ (0[,]+∞) |
97 | 96, 4 | sstri 3901 |
. . . . . . 7
⊢ ran vol
⊆ ℝ* |
98 | 94, 97 | sstri 3901 |
. . . . . 6
⊢ (vol
“ ran (𝑚 ∈
ℕ ↦ (𝐴 ∩
(-𝑚[,]𝑚)))) ⊆
ℝ* |
99 | | supxrleub 12760 |
. . . . . 6
⊢ (((vol
“ ran (𝑚 ∈
ℕ ↦ (𝐴 ∩
(-𝑚[,]𝑚)))) ⊆ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛 ≤ 𝐵)) |
100 | 98, 3, 99 | sylancr 590 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (sup((vol “ ran
(𝑚 ∈ ℕ ↦
(𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛 ≤ 𝐵)) |
101 | | ffn 6498 |
. . . . . . . 8
⊢ (vol:dom
vol⟶(0[,]+∞) → vol Fn dom vol) |
102 | 5, 101 | ax-mp 5 |
. . . . . . 7
⊢ vol Fn
dom vol |
103 | 32 | frnd 6505 |
. . . . . . 7
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) ⊆ dom vol) |
104 | | breq1 5035 |
. . . . . . . 8
⊢ (𝑛 = (vol‘𝑧) → (𝑛 ≤ 𝐵 ↔ (vol‘𝑧) ≤ 𝐵)) |
105 | 104 | ralima 6992 |
. . . . . . 7
⊢ ((vol Fn
dom vol ∧ ran (𝑚 ∈
ℕ ↦ (𝐴 ∩
(-𝑚[,]𝑚))) ⊆ dom vol) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛 ≤ 𝐵 ↔ ∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵)) |
106 | 102, 103,
105 | sylancr 590 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛 ≤ 𝐵 ↔ ∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵)) |
107 | | fveq2 6658 |
. . . . . . . . . 10
⊢ (𝑧 = ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) → (vol‘𝑧) = (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛))) |
108 | 107 | breq1d 5042 |
. . . . . . . . 9
⊢ (𝑧 = ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) → ((vol‘𝑧) ≤ 𝐵 ↔ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵)) |
109 | 108 | ralrn 6845 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵)) |
110 | 33, 109 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵)) |
111 | 19 | fveq2d 6662 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(vol‘((𝑚 ∈
ℕ ↦ (𝐴 ∩
(-𝑚[,]𝑚)))‘𝑛)) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛)))) |
112 | 111 | breq1d 5042 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
((vol‘((𝑚 ∈
ℕ ↦ (𝐴 ∩
(-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)) |
113 | 112 | ralbiia 3096 |
. . . . . . 7
⊢
(∀𝑛 ∈
ℕ (vol‘((𝑚
∈ ℕ ↦ (𝐴
∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵) |
114 | 110, 113 | bitrdi 290 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)) |
115 | 106, 114 | bitrd 282 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛 ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)) |
116 | 93, 100, 115 | 3bitrd 308 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ((vol‘𝐴) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)) |
117 | 11, 116 | mtbid 327 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ¬ ∀𝑛 ∈ ℕ
(vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵) |
118 | | rexnal 3165 |
. . 3
⊢
(∃𝑛 ∈
ℕ ¬ (vol‘(𝐴
∩ (-𝑛[,]𝑛))) ≤ 𝐵 ↔ ¬ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵) |
119 | 117, 118 | sylibr 237 |
. 2
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ ¬
(vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵) |
120 | 3 | adantr 484 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈
ℝ*) |
121 | 5 | ffvelrni 6841 |
. . . . . 6
⊢ ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ (0[,]+∞)) |
122 | 4, 121 | sseldi 3890 |
. . . . 5
⊢ ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈
ℝ*) |
123 | 30, 122 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈
ℝ*) |
124 | | xrltnle 10746 |
. . . 4
⊢ ((𝐵 ∈ ℝ*
∧ (vol‘(𝐴 ∩
(-𝑛[,]𝑛))) ∈ ℝ*) → (𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)) |
125 | 120, 123,
124 | syl2anc 587 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)) |
126 | 125 | rexbidva 3220 |
. 2
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ∃𝑛 ∈ ℕ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)) |
127 | 119, 126 | mpbird 260 |
1
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛)))) |