MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem2 Structured version   Visualization version   GIF version

Theorem voliunlem2 25459
Description: Lemma for voliun 25462. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (𝜑𝐹:ℕ⟶dom vol)
voliunlem.5 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
voliunlem.6 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
Assertion
Ref Expression
voliunlem2 (𝜑 ran 𝐹 ∈ dom vol)
Distinct variable groups:   𝑖,𝑛,𝑥,𝐹   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑖)   𝐻(𝑥,𝑖,𝑛)

Proof of Theorem voliunlem2
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 voliunlem.3 . . . . 5 (𝜑𝐹:ℕ⟶dom vol)
21frnd 6699 . . . 4 (𝜑 → ran 𝐹 ⊆ dom vol)
3 mblss 25439 . . . . . 6 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
4 velpw 4571 . . . . . 6 (𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
53, 4sylibr 234 . . . . 5 (𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ)
65ssriv 3953 . . . 4 dom vol ⊆ 𝒫 ℝ
72, 6sstrdi 3962 . . 3 (𝜑 → ran 𝐹 ⊆ 𝒫 ℝ)
8 sspwuni 5067 . . 3 (ran 𝐹 ⊆ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
97, 8sylib 218 . 2 (𝜑 ran 𝐹 ⊆ ℝ)
10 elpwi 4573 . . . 4 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
11 inundif 4445 . . . . . . . 8 ((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹)) = 𝑥
1211fveq2i 6864 . . . . . . 7 (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) = (vol*‘𝑥)
13 inss1 4203 . . . . . . . . 9 (𝑥 ran 𝐹) ⊆ 𝑥
14 simp2 1137 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
1513, 14sstrid 3961 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ran 𝐹) ⊆ ℝ)
16 ovolsscl 25394 . . . . . . . . . 10 (((𝑥 ran 𝐹) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
1713, 16mp3an1 1450 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
18173adant1 1130 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
19 difss 4102 . . . . . . . . 9 (𝑥 ran 𝐹) ⊆ 𝑥
2019, 14sstrid 3961 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ran 𝐹) ⊆ ℝ)
21 ovolsscl 25394 . . . . . . . . . 10 (((𝑥 ran 𝐹) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
2219, 21mp3an1 1450 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
23223adant1 1130 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
24 ovolun 25407 . . . . . . . 8 ((((𝑥 ran 𝐹) ⊆ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ) ∧ ((𝑥 ran 𝐹) ⊆ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)) → (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2515, 18, 20, 23, 24syl22anc 838 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2612, 25eqbrtrrid 5146 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2718rexrd 11231 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ*)
28 nnuz 12843 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
29 1zzd 12571 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 1 ∈ ℤ)
30 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3130ineq2d 4186 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝑥 ∩ (𝐹𝑛)) = (𝑥 ∩ (𝐹𝑘)))
3231fveq2d 6865 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (vol*‘(𝑥 ∩ (𝐹𝑛))) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
33 voliunlem.6 . . . . . . . . . . . . . . 15 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
34 fvex 6874 . . . . . . . . . . . . . . 15 (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ V
3532, 33, 34fvmpt 6971 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐻𝑘) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
3635adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
37 inss1 4203 . . . . . . . . . . . . . . . 16 (𝑥 ∩ (𝐹𝑘)) ⊆ 𝑥
38 ovolsscl 25394 . . . . . . . . . . . . . . . 16 (((𝑥 ∩ (𝐹𝑘)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
3937, 38mp3an1 1450 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
40393adant1 1130 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
4140adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
4236, 41eqeltrd 2829 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℝ)
4328, 29, 42serfre 14003 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → seq1( + , 𝐻):ℕ⟶ℝ)
4443frnd 6699 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ran seq1( + , 𝐻) ⊆ ℝ)
45 ressxr 11225 . . . . . . . . . 10 ℝ ⊆ ℝ*
4644, 45sstrdi 3962 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ran seq1( + , 𝐻) ⊆ ℝ*)
47 supxrcl 13282 . . . . . . . . 9 (ran seq1( + , 𝐻) ⊆ ℝ* → sup(ran seq1( + , 𝐻), ℝ*, < ) ∈ ℝ*)
4846, 47syl 17 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → sup(ran seq1( + , 𝐻), ℝ*, < ) ∈ ℝ*)
49 simp3 1138 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ ℝ)
5049, 23resubcld 11613 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ)
5150rexrd 11231 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ*)
52 iunin2 5038 . . . . . . . . . . 11 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛)) = (𝑥 𝑛 ∈ ℕ (𝐹𝑛))
53 ffn 6691 . . . . . . . . . . . . . 14 (𝐹:ℕ⟶dom vol → 𝐹 Fn ℕ)
54 fniunfv 7224 . . . . . . . . . . . . . 14 (𝐹 Fn ℕ → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
551, 53, 543syl 18 . . . . . . . . . . . . 13 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
56553ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
5756ineq2d 4186 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 𝑛 ∈ ℕ (𝐹𝑛)) = (𝑥 ran 𝐹))
5852, 57eqtrid 2777 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛)) = (𝑥 ran 𝐹))
5958fveq2d 6865 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘ 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛))) = (vol*‘(𝑥 ran 𝐹)))
60 eqid 2730 . . . . . . . . . 10 seq1( + , 𝐻) = seq1( + , 𝐻)
61 inss1 4203 . . . . . . . . . . . 12 (𝑥 ∩ (𝐹𝑛)) ⊆ 𝑥
6261, 14sstrid 3961 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∩ (𝐹𝑛)) ⊆ ℝ)
6362adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝑥 ∩ (𝐹𝑛)) ⊆ ℝ)
64 ovolsscl 25394 . . . . . . . . . . . . 13 (((𝑥 ∩ (𝐹𝑛)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
6561, 64mp3an1 1450 . . . . . . . . . . . 12 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
66653adant1 1130 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
6766adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
6860, 33, 63, 67ovoliun 25413 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘ 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛))) ≤ sup(ran seq1( + , 𝐻), ℝ*, < ))
6959, 68eqbrtrrd 5134 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ≤ sup(ran seq1( + , 𝐻), ℝ*, < ))
7013ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝐹:ℕ⟶dom vol)
71 voliunlem.5 . . . . . . . . . . . . . 14 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
72713ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → Disj 𝑖 ∈ ℕ (𝐹𝑖))
7370, 72, 33, 14, 49voliunlem1 25458 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))
7443ffvelcdmda 7059 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) ∈ ℝ)
7523adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
76 simpl3 1194 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘𝑥) ∈ ℝ)
77 leaddsub 11661 . . . . . . . . . . . . 13 (((seq1( + , 𝐻)‘𝑘) ∈ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
7874, 75, 76, 77syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
7973, 78mpbid 232 . . . . . . . . . . 11 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
8079ralrimiva 3126 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
81 ffn 6691 . . . . . . . . . . 11 (seq1( + , 𝐻):ℕ⟶ℝ → seq1( + , 𝐻) Fn ℕ)
82 breq1 5113 . . . . . . . . . . . 12 (𝑧 = (seq1( + , 𝐻)‘𝑘) → (𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8382ralrn 7063 . . . . . . . . . . 11 (seq1( + , 𝐻) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8443, 81, 833syl 18 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8580, 84mpbird 257 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
86 supxrleub 13293 . . . . . . . . . 10 ((ran seq1( + , 𝐻) ⊆ ℝ* ∧ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ*) → (sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8746, 51, 86syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8885, 87mpbird 257 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
8927, 48, 51, 69, 88xrletrd 13129 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
90 leaddsub 11661 . . . . . . . 8 (((vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
9118, 23, 49, 90syl3anc 1373 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
9289, 91mpbird 257 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))
9318, 23readdcld 11210 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ∈ ℝ)
9449, 93letri3d 11323 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ↔ ((vol*‘𝑥) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ∧ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))))
9526, 92, 94mpbir2and 713 . . . . 5 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
96953expia 1121 . . . 4 ((𝜑𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
9710, 96sylan2 593 . . 3 ((𝜑𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
9897ralrimiva 3126 . 2 (𝜑 → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
99 ismbl 25434 . 2 ( ran 𝐹 ∈ dom vol ↔ ( ran 𝐹 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))))
1009, 98, 99sylanbrc 583 1 (𝜑 ran 𝐹 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cdif 3914  cun 3915  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874   ciun 4958  Disj wdisj 5077   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  supcsup 9398  cr 11074  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cle 11216  cmin 11412  cn 12193  seqcseq 13973  vol*covol 25370  volcvol 25371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-ovol 25372  df-vol 25373
This theorem is referenced by:  voliunlem3  25460  iunmbl  25461
  Copyright terms: Public domain W3C validator