MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem2 Structured version   Visualization version   GIF version

Theorem voliunlem2 25068
Description: Lemma for voliun 25071. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (πœ‘ β†’ 𝐹:β„•βŸΆdom vol)
voliunlem.5 (πœ‘ β†’ Disj 𝑖 ∈ β„• (πΉβ€˜π‘–))
voliunlem.6 𝐻 = (𝑛 ∈ β„• ↦ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘›))))
Assertion
Ref Expression
voliunlem2 (πœ‘ β†’ βˆͺ ran 𝐹 ∈ dom vol)
Distinct variable groups:   𝑖,𝑛,π‘₯,𝐹   πœ‘,𝑛,π‘₯
Allowed substitution hints:   πœ‘(𝑖)   𝐻(π‘₯,𝑖,𝑛)

Proof of Theorem voliunlem2
Dummy variables π‘˜ 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 voliunlem.3 . . . . 5 (πœ‘ β†’ 𝐹:β„•βŸΆdom vol)
21frnd 6726 . . . 4 (πœ‘ β†’ ran 𝐹 βŠ† dom vol)
3 mblss 25048 . . . . . 6 (π‘₯ ∈ dom vol β†’ π‘₯ βŠ† ℝ)
4 velpw 4608 . . . . . 6 (π‘₯ ∈ 𝒫 ℝ ↔ π‘₯ βŠ† ℝ)
53, 4sylibr 233 . . . . 5 (π‘₯ ∈ dom vol β†’ π‘₯ ∈ 𝒫 ℝ)
65ssriv 3987 . . . 4 dom vol βŠ† 𝒫 ℝ
72, 6sstrdi 3995 . . 3 (πœ‘ β†’ ran 𝐹 βŠ† 𝒫 ℝ)
8 sspwuni 5104 . . 3 (ran 𝐹 βŠ† 𝒫 ℝ ↔ βˆͺ ran 𝐹 βŠ† ℝ)
97, 8sylib 217 . 2 (πœ‘ β†’ βˆͺ ran 𝐹 βŠ† ℝ)
10 elpwi 4610 . . . 4 (π‘₯ ∈ 𝒫 ℝ β†’ π‘₯ βŠ† ℝ)
11 inundif 4479 . . . . . . . 8 ((π‘₯ ∩ βˆͺ ran 𝐹) βˆͺ (π‘₯ βˆ– βˆͺ ran 𝐹)) = π‘₯
1211fveq2i 6895 . . . . . . 7 (vol*β€˜((π‘₯ ∩ βˆͺ ran 𝐹) βˆͺ (π‘₯ βˆ– βˆͺ ran 𝐹))) = (vol*β€˜π‘₯)
13 inss1 4229 . . . . . . . . 9 (π‘₯ ∩ βˆͺ ran 𝐹) βŠ† π‘₯
14 simp2 1138 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ π‘₯ βŠ† ℝ)
1513, 14sstrid 3994 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (π‘₯ ∩ βˆͺ ran 𝐹) βŠ† ℝ)
16 ovolsscl 25003 . . . . . . . . . 10 (((π‘₯ ∩ βˆͺ ran 𝐹) βŠ† π‘₯ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ∈ ℝ)
1713, 16mp3an1 1449 . . . . . . . . 9 ((π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ∈ ℝ)
18173adant1 1131 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ∈ ℝ)
19 difss 4132 . . . . . . . . 9 (π‘₯ βˆ– βˆͺ ran 𝐹) βŠ† π‘₯
2019, 14sstrid 3994 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (π‘₯ βˆ– βˆͺ ran 𝐹) βŠ† ℝ)
21 ovolsscl 25003 . . . . . . . . . 10 (((π‘₯ βˆ– βˆͺ ran 𝐹) βŠ† π‘₯ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)) ∈ ℝ)
2219, 21mp3an1 1449 . . . . . . . . 9 ((π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)) ∈ ℝ)
23223adant1 1131 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)) ∈ ℝ)
24 ovolun 25016 . . . . . . . 8 ((((π‘₯ ∩ βˆͺ ran 𝐹) βŠ† ℝ ∧ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ∈ ℝ) ∧ ((π‘₯ βˆ– βˆͺ ran 𝐹) βŠ† ℝ ∧ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)) ∈ ℝ)) β†’ (vol*β€˜((π‘₯ ∩ βˆͺ ran 𝐹) βˆͺ (π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
2515, 18, 20, 23, 24syl22anc 838 . . . . . . 7 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜((π‘₯ ∩ βˆͺ ran 𝐹) βˆͺ (π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
2612, 25eqbrtrrid 5185 . . . . . 6 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜π‘₯) ≀ ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
2718rexrd 11264 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ∈ ℝ*)
28 nnuz 12865 . . . . . . . . . . . 12 β„• = (β„€β‰₯β€˜1)
29 1zzd 12593 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ 1 ∈ β„€)
30 fveq2 6892 . . . . . . . . . . . . . . . . 17 (𝑛 = π‘˜ β†’ (πΉβ€˜π‘›) = (πΉβ€˜π‘˜))
3130ineq2d 4213 . . . . . . . . . . . . . . . 16 (𝑛 = π‘˜ β†’ (π‘₯ ∩ (πΉβ€˜π‘›)) = (π‘₯ ∩ (πΉβ€˜π‘˜)))
3231fveq2d 6896 . . . . . . . . . . . . . . 15 (𝑛 = π‘˜ β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘›))) = (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))))
33 voliunlem.6 . . . . . . . . . . . . . . 15 𝐻 = (𝑛 ∈ β„• ↦ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘›))))
34 fvex 6905 . . . . . . . . . . . . . . 15 (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))) ∈ V
3532, 33, 34fvmpt 6999 . . . . . . . . . . . . . 14 (π‘˜ ∈ β„• β†’ (π»β€˜π‘˜) = (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))))
3635adantl 483 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (π»β€˜π‘˜) = (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))))
37 inss1 4229 . . . . . . . . . . . . . . . 16 (π‘₯ ∩ (πΉβ€˜π‘˜)) βŠ† π‘₯
38 ovolsscl 25003 . . . . . . . . . . . . . . . 16 (((π‘₯ ∩ (πΉβ€˜π‘˜)) βŠ† π‘₯ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))) ∈ ℝ)
3937, 38mp3an1 1449 . . . . . . . . . . . . . . 15 ((π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))) ∈ ℝ)
40393adant1 1131 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))) ∈ ℝ)
4140adantr 482 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))) ∈ ℝ)
4236, 41eqeltrd 2834 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (π»β€˜π‘˜) ∈ ℝ)
4328, 29, 42serfre 13997 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ seq1( + , 𝐻):β„•βŸΆβ„)
4443frnd 6726 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ ran seq1( + , 𝐻) βŠ† ℝ)
45 ressxr 11258 . . . . . . . . . 10 ℝ βŠ† ℝ*
4644, 45sstrdi 3995 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ ran seq1( + , 𝐻) βŠ† ℝ*)
47 supxrcl 13294 . . . . . . . . 9 (ran seq1( + , 𝐻) βŠ† ℝ* β†’ sup(ran seq1( + , 𝐻), ℝ*, < ) ∈ ℝ*)
4846, 47syl 17 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ sup(ran seq1( + , 𝐻), ℝ*, < ) ∈ ℝ*)
49 simp3 1139 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜π‘₯) ∈ ℝ)
5049, 23resubcld 11642 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ∈ ℝ)
5150rexrd 11264 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ∈ ℝ*)
52 iunin2 5075 . . . . . . . . . . 11 βˆͺ 𝑛 ∈ β„• (π‘₯ ∩ (πΉβ€˜π‘›)) = (π‘₯ ∩ βˆͺ 𝑛 ∈ β„• (πΉβ€˜π‘›))
53 ffn 6718 . . . . . . . . . . . . . 14 (𝐹:β„•βŸΆdom vol β†’ 𝐹 Fn β„•)
54 fniunfv 7246 . . . . . . . . . . . . . 14 (𝐹 Fn β„• β†’ βˆͺ 𝑛 ∈ β„• (πΉβ€˜π‘›) = βˆͺ ran 𝐹)
551, 53, 543syl 18 . . . . . . . . . . . . 13 (πœ‘ β†’ βˆͺ 𝑛 ∈ β„• (πΉβ€˜π‘›) = βˆͺ ran 𝐹)
56553ad2ant1 1134 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ βˆͺ 𝑛 ∈ β„• (πΉβ€˜π‘›) = βˆͺ ran 𝐹)
5756ineq2d 4213 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (π‘₯ ∩ βˆͺ 𝑛 ∈ β„• (πΉβ€˜π‘›)) = (π‘₯ ∩ βˆͺ ran 𝐹))
5852, 57eqtrid 2785 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ βˆͺ 𝑛 ∈ β„• (π‘₯ ∩ (πΉβ€˜π‘›)) = (π‘₯ ∩ βˆͺ ran 𝐹))
5958fveq2d 6896 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• (π‘₯ ∩ (πΉβ€˜π‘›))) = (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)))
60 eqid 2733 . . . . . . . . . 10 seq1( + , 𝐻) = seq1( + , 𝐻)
61 inss1 4229 . . . . . . . . . . . 12 (π‘₯ ∩ (πΉβ€˜π‘›)) βŠ† π‘₯
6261, 14sstrid 3994 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (π‘₯ ∩ (πΉβ€˜π‘›)) βŠ† ℝ)
6362adantr 482 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ 𝑛 ∈ β„•) β†’ (π‘₯ ∩ (πΉβ€˜π‘›)) βŠ† ℝ)
64 ovolsscl 25003 . . . . . . . . . . . . 13 (((π‘₯ ∩ (πΉβ€˜π‘›)) βŠ† π‘₯ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘›))) ∈ ℝ)
6561, 64mp3an1 1449 . . . . . . . . . . . 12 ((π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘›))) ∈ ℝ)
66653adant1 1131 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘›))) ∈ ℝ)
6766adantr 482 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ 𝑛 ∈ β„•) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘›))) ∈ ℝ)
6860, 33, 63, 67ovoliun 25022 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• (π‘₯ ∩ (πΉβ€˜π‘›))) ≀ sup(ran seq1( + , 𝐻), ℝ*, < ))
6959, 68eqbrtrrd 5173 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ≀ sup(ran seq1( + , 𝐻), ℝ*, < ))
7013ad2ant1 1134 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ 𝐹:β„•βŸΆdom vol)
71 voliunlem.5 . . . . . . . . . . . . . 14 (πœ‘ β†’ Disj 𝑖 ∈ β„• (πΉβ€˜π‘–))
72713ad2ant1 1134 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ Disj 𝑖 ∈ β„• (πΉβ€˜π‘–))
7370, 72, 33, 14, 49voliunlem1 25067 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ ((seq1( + , 𝐻)β€˜π‘˜) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ (vol*β€˜π‘₯))
7443ffvelcdmda 7087 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (seq1( + , 𝐻)β€˜π‘˜) ∈ ℝ)
7523adantr 482 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)) ∈ ℝ)
76 simpl3 1194 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (vol*β€˜π‘₯) ∈ ℝ)
77 leaddsub 11690 . . . . . . . . . . . . 13 (((seq1( + , 𝐻)β€˜π‘˜) ∈ ℝ ∧ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)) ∈ ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (((seq1( + , 𝐻)β€˜π‘˜) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ (vol*β€˜π‘₯) ↔ (seq1( + , 𝐻)β€˜π‘˜) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
7874, 75, 76, 77syl3anc 1372 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (((seq1( + , 𝐻)β€˜π‘˜) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ (vol*β€˜π‘₯) ↔ (seq1( + , 𝐻)β€˜π‘˜) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
7973, 78mpbid 231 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (seq1( + , 𝐻)β€˜π‘˜) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
8079ralrimiva 3147 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ βˆ€π‘˜ ∈ β„• (seq1( + , 𝐻)β€˜π‘˜) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
81 ffn 6718 . . . . . . . . . . 11 (seq1( + , 𝐻):β„•βŸΆβ„ β†’ seq1( + , 𝐻) Fn β„•)
82 breq1 5152 . . . . . . . . . . . 12 (𝑧 = (seq1( + , 𝐻)β€˜π‘˜) β†’ (𝑧 ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ↔ (seq1( + , 𝐻)β€˜π‘˜) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
8382ralrn 7090 . . . . . . . . . . 11 (seq1( + , 𝐻) Fn β„• β†’ (βˆ€π‘§ ∈ ran seq1( + , 𝐻)𝑧 ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ↔ βˆ€π‘˜ ∈ β„• (seq1( + , 𝐻)β€˜π‘˜) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
8443, 81, 833syl 18 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (βˆ€π‘§ ∈ ran seq1( + , 𝐻)𝑧 ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ↔ βˆ€π‘˜ ∈ β„• (seq1( + , 𝐻)β€˜π‘˜) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
8580, 84mpbird 257 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ βˆ€π‘§ ∈ ran seq1( + , 𝐻)𝑧 ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
86 supxrleub 13305 . . . . . . . . . 10 ((ran seq1( + , 𝐻) βŠ† ℝ* ∧ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ∈ ℝ*) β†’ (sup(ran seq1( + , 𝐻), ℝ*, < ) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ↔ βˆ€π‘§ ∈ ran seq1( + , 𝐻)𝑧 ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
8746, 51, 86syl2anc 585 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (sup(ran seq1( + , 𝐻), ℝ*, < ) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ↔ βˆ€π‘§ ∈ ran seq1( + , 𝐻)𝑧 ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
8885, 87mpbird 257 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ sup(ran seq1( + , 𝐻), ℝ*, < ) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
8927, 48, 51, 69, 88xrletrd 13141 . . . . . . 7 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
90 leaddsub 11690 . . . . . . . 8 (((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ∈ ℝ ∧ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)) ∈ ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ (vol*β€˜π‘₯) ↔ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
9118, 23, 49, 90syl3anc 1372 . . . . . . 7 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ (vol*β€˜π‘₯) ↔ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
9289, 91mpbird 257 . . . . . 6 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ (vol*β€˜π‘₯))
9318, 23readdcld 11243 . . . . . . 7 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ∈ ℝ)
9449, 93letri3d 11356 . . . . . 6 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ ((vol*β€˜π‘₯) = ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ↔ ((vol*β€˜π‘₯) ≀ ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ∧ ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ (vol*β€˜π‘₯))))
9526, 92, 94mpbir2and 712 . . . . 5 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜π‘₯) = ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
96953expia 1122 . . . 4 ((πœ‘ ∧ π‘₯ βŠ† ℝ) β†’ ((vol*β€˜π‘₯) ∈ ℝ β†’ (vol*β€˜π‘₯) = ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
9710, 96sylan2 594 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝒫 ℝ) β†’ ((vol*β€˜π‘₯) ∈ ℝ β†’ (vol*β€˜π‘₯) = ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
9897ralrimiva 3147 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝒫 ℝ((vol*β€˜π‘₯) ∈ ℝ β†’ (vol*β€˜π‘₯) = ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
99 ismbl 25043 . 2 (βˆͺ ran 𝐹 ∈ dom vol ↔ (βˆͺ ran 𝐹 βŠ† ℝ ∧ βˆ€π‘₯ ∈ 𝒫 ℝ((vol*β€˜π‘₯) ∈ ℝ β†’ (vol*β€˜π‘₯) = ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))))
1009, 98, 99sylanbrc 584 1 (πœ‘ β†’ βˆͺ ran 𝐹 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062   βˆ– cdif 3946   βˆͺ cun 3947   ∩ cin 3948   βŠ† wss 3949  π’« cpw 4603  βˆͺ cuni 4909  βˆͺ ciun 4998  Disj wdisj 5114   class class class wbr 5149   ↦ cmpt 5232  dom cdm 5677  ran crn 5678   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  supcsup 9435  β„cr 11109  1c1 11111   + caddc 11113  β„*cxr 11247   < clt 11248   ≀ cle 11249   βˆ’ cmin 11444  β„•cn 12212  seqcseq 13966  vol*covol 24979  volcvol 24980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cc 10430  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-ioo 13328  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-rlim 15433  df-sum 15633  df-ovol 24981  df-vol 24982
This theorem is referenced by:  voliunlem3  25069  iunmbl  25070
  Copyright terms: Public domain W3C validator