MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem2 Structured version   Visualization version   GIF version

Theorem voliunlem2 25075
Description: Lemma for voliun 25078. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (πœ‘ β†’ 𝐹:β„•βŸΆdom vol)
voliunlem.5 (πœ‘ β†’ Disj 𝑖 ∈ β„• (πΉβ€˜π‘–))
voliunlem.6 𝐻 = (𝑛 ∈ β„• ↦ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘›))))
Assertion
Ref Expression
voliunlem2 (πœ‘ β†’ βˆͺ ran 𝐹 ∈ dom vol)
Distinct variable groups:   𝑖,𝑛,π‘₯,𝐹   πœ‘,𝑛,π‘₯
Allowed substitution hints:   πœ‘(𝑖)   𝐻(π‘₯,𝑖,𝑛)

Proof of Theorem voliunlem2
Dummy variables π‘˜ 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 voliunlem.3 . . . . 5 (πœ‘ β†’ 𝐹:β„•βŸΆdom vol)
21frnd 6725 . . . 4 (πœ‘ β†’ ran 𝐹 βŠ† dom vol)
3 mblss 25055 . . . . . 6 (π‘₯ ∈ dom vol β†’ π‘₯ βŠ† ℝ)
4 velpw 4607 . . . . . 6 (π‘₯ ∈ 𝒫 ℝ ↔ π‘₯ βŠ† ℝ)
53, 4sylibr 233 . . . . 5 (π‘₯ ∈ dom vol β†’ π‘₯ ∈ 𝒫 ℝ)
65ssriv 3986 . . . 4 dom vol βŠ† 𝒫 ℝ
72, 6sstrdi 3994 . . 3 (πœ‘ β†’ ran 𝐹 βŠ† 𝒫 ℝ)
8 sspwuni 5103 . . 3 (ran 𝐹 βŠ† 𝒫 ℝ ↔ βˆͺ ran 𝐹 βŠ† ℝ)
97, 8sylib 217 . 2 (πœ‘ β†’ βˆͺ ran 𝐹 βŠ† ℝ)
10 elpwi 4609 . . . 4 (π‘₯ ∈ 𝒫 ℝ β†’ π‘₯ βŠ† ℝ)
11 inundif 4478 . . . . . . . 8 ((π‘₯ ∩ βˆͺ ran 𝐹) βˆͺ (π‘₯ βˆ– βˆͺ ran 𝐹)) = π‘₯
1211fveq2i 6894 . . . . . . 7 (vol*β€˜((π‘₯ ∩ βˆͺ ran 𝐹) βˆͺ (π‘₯ βˆ– βˆͺ ran 𝐹))) = (vol*β€˜π‘₯)
13 inss1 4228 . . . . . . . . 9 (π‘₯ ∩ βˆͺ ran 𝐹) βŠ† π‘₯
14 simp2 1137 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ π‘₯ βŠ† ℝ)
1513, 14sstrid 3993 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (π‘₯ ∩ βˆͺ ran 𝐹) βŠ† ℝ)
16 ovolsscl 25010 . . . . . . . . . 10 (((π‘₯ ∩ βˆͺ ran 𝐹) βŠ† π‘₯ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ∈ ℝ)
1713, 16mp3an1 1448 . . . . . . . . 9 ((π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ∈ ℝ)
18173adant1 1130 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ∈ ℝ)
19 difss 4131 . . . . . . . . 9 (π‘₯ βˆ– βˆͺ ran 𝐹) βŠ† π‘₯
2019, 14sstrid 3993 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (π‘₯ βˆ– βˆͺ ran 𝐹) βŠ† ℝ)
21 ovolsscl 25010 . . . . . . . . . 10 (((π‘₯ βˆ– βˆͺ ran 𝐹) βŠ† π‘₯ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)) ∈ ℝ)
2219, 21mp3an1 1448 . . . . . . . . 9 ((π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)) ∈ ℝ)
23223adant1 1130 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)) ∈ ℝ)
24 ovolun 25023 . . . . . . . 8 ((((π‘₯ ∩ βˆͺ ran 𝐹) βŠ† ℝ ∧ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ∈ ℝ) ∧ ((π‘₯ βˆ– βˆͺ ran 𝐹) βŠ† ℝ ∧ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)) ∈ ℝ)) β†’ (vol*β€˜((π‘₯ ∩ βˆͺ ran 𝐹) βˆͺ (π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
2515, 18, 20, 23, 24syl22anc 837 . . . . . . 7 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜((π‘₯ ∩ βˆͺ ran 𝐹) βˆͺ (π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
2612, 25eqbrtrrid 5184 . . . . . 6 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜π‘₯) ≀ ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
2718rexrd 11266 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ∈ ℝ*)
28 nnuz 12867 . . . . . . . . . . . 12 β„• = (β„€β‰₯β€˜1)
29 1zzd 12595 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ 1 ∈ β„€)
30 fveq2 6891 . . . . . . . . . . . . . . . . 17 (𝑛 = π‘˜ β†’ (πΉβ€˜π‘›) = (πΉβ€˜π‘˜))
3130ineq2d 4212 . . . . . . . . . . . . . . . 16 (𝑛 = π‘˜ β†’ (π‘₯ ∩ (πΉβ€˜π‘›)) = (π‘₯ ∩ (πΉβ€˜π‘˜)))
3231fveq2d 6895 . . . . . . . . . . . . . . 15 (𝑛 = π‘˜ β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘›))) = (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))))
33 voliunlem.6 . . . . . . . . . . . . . . 15 𝐻 = (𝑛 ∈ β„• ↦ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘›))))
34 fvex 6904 . . . . . . . . . . . . . . 15 (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))) ∈ V
3532, 33, 34fvmpt 6998 . . . . . . . . . . . . . 14 (π‘˜ ∈ β„• β†’ (π»β€˜π‘˜) = (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))))
3635adantl 482 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (π»β€˜π‘˜) = (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))))
37 inss1 4228 . . . . . . . . . . . . . . . 16 (π‘₯ ∩ (πΉβ€˜π‘˜)) βŠ† π‘₯
38 ovolsscl 25010 . . . . . . . . . . . . . . . 16 (((π‘₯ ∩ (πΉβ€˜π‘˜)) βŠ† π‘₯ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))) ∈ ℝ)
3937, 38mp3an1 1448 . . . . . . . . . . . . . . 15 ((π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))) ∈ ℝ)
40393adant1 1130 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))) ∈ ℝ)
4140adantr 481 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘˜))) ∈ ℝ)
4236, 41eqeltrd 2833 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (π»β€˜π‘˜) ∈ ℝ)
4328, 29, 42serfre 13999 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ seq1( + , 𝐻):β„•βŸΆβ„)
4443frnd 6725 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ ran seq1( + , 𝐻) βŠ† ℝ)
45 ressxr 11260 . . . . . . . . . 10 ℝ βŠ† ℝ*
4644, 45sstrdi 3994 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ ran seq1( + , 𝐻) βŠ† ℝ*)
47 supxrcl 13296 . . . . . . . . 9 (ran seq1( + , 𝐻) βŠ† ℝ* β†’ sup(ran seq1( + , 𝐻), ℝ*, < ) ∈ ℝ*)
4846, 47syl 17 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ sup(ran seq1( + , 𝐻), ℝ*, < ) ∈ ℝ*)
49 simp3 1138 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜π‘₯) ∈ ℝ)
5049, 23resubcld 11644 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ∈ ℝ)
5150rexrd 11266 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ∈ ℝ*)
52 iunin2 5074 . . . . . . . . . . 11 βˆͺ 𝑛 ∈ β„• (π‘₯ ∩ (πΉβ€˜π‘›)) = (π‘₯ ∩ βˆͺ 𝑛 ∈ β„• (πΉβ€˜π‘›))
53 ffn 6717 . . . . . . . . . . . . . 14 (𝐹:β„•βŸΆdom vol β†’ 𝐹 Fn β„•)
54 fniunfv 7248 . . . . . . . . . . . . . 14 (𝐹 Fn β„• β†’ βˆͺ 𝑛 ∈ β„• (πΉβ€˜π‘›) = βˆͺ ran 𝐹)
551, 53, 543syl 18 . . . . . . . . . . . . 13 (πœ‘ β†’ βˆͺ 𝑛 ∈ β„• (πΉβ€˜π‘›) = βˆͺ ran 𝐹)
56553ad2ant1 1133 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ βˆͺ 𝑛 ∈ β„• (πΉβ€˜π‘›) = βˆͺ ran 𝐹)
5756ineq2d 4212 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (π‘₯ ∩ βˆͺ 𝑛 ∈ β„• (πΉβ€˜π‘›)) = (π‘₯ ∩ βˆͺ ran 𝐹))
5852, 57eqtrid 2784 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ βˆͺ 𝑛 ∈ β„• (π‘₯ ∩ (πΉβ€˜π‘›)) = (π‘₯ ∩ βˆͺ ran 𝐹))
5958fveq2d 6895 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• (π‘₯ ∩ (πΉβ€˜π‘›))) = (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)))
60 eqid 2732 . . . . . . . . . 10 seq1( + , 𝐻) = seq1( + , 𝐻)
61 inss1 4228 . . . . . . . . . . . 12 (π‘₯ ∩ (πΉβ€˜π‘›)) βŠ† π‘₯
6261, 14sstrid 3993 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (π‘₯ ∩ (πΉβ€˜π‘›)) βŠ† ℝ)
6362adantr 481 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ 𝑛 ∈ β„•) β†’ (π‘₯ ∩ (πΉβ€˜π‘›)) βŠ† ℝ)
64 ovolsscl 25010 . . . . . . . . . . . . 13 (((π‘₯ ∩ (πΉβ€˜π‘›)) βŠ† π‘₯ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘›))) ∈ ℝ)
6561, 64mp3an1 1448 . . . . . . . . . . . 12 ((π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘›))) ∈ ℝ)
66653adant1 1130 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘›))) ∈ ℝ)
6766adantr 481 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ 𝑛 ∈ β„•) β†’ (vol*β€˜(π‘₯ ∩ (πΉβ€˜π‘›))) ∈ ℝ)
6860, 33, 63, 67ovoliun 25029 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• (π‘₯ ∩ (πΉβ€˜π‘›))) ≀ sup(ran seq1( + , 𝐻), ℝ*, < ))
6959, 68eqbrtrrd 5172 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ≀ sup(ran seq1( + , 𝐻), ℝ*, < ))
7013ad2ant1 1133 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ 𝐹:β„•βŸΆdom vol)
71 voliunlem.5 . . . . . . . . . . . . . 14 (πœ‘ β†’ Disj 𝑖 ∈ β„• (πΉβ€˜π‘–))
72713ad2ant1 1133 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ Disj 𝑖 ∈ β„• (πΉβ€˜π‘–))
7370, 72, 33, 14, 49voliunlem1 25074 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ ((seq1( + , 𝐻)β€˜π‘˜) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ (vol*β€˜π‘₯))
7443ffvelcdmda 7086 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (seq1( + , 𝐻)β€˜π‘˜) ∈ ℝ)
7523adantr 481 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)) ∈ ℝ)
76 simpl3 1193 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (vol*β€˜π‘₯) ∈ ℝ)
77 leaddsub 11692 . . . . . . . . . . . . 13 (((seq1( + , 𝐻)β€˜π‘˜) ∈ ℝ ∧ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)) ∈ ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (((seq1( + , 𝐻)β€˜π‘˜) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ (vol*β€˜π‘₯) ↔ (seq1( + , 𝐻)β€˜π‘˜) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
7874, 75, 76, 77syl3anc 1371 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (((seq1( + , 𝐻)β€˜π‘˜) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ (vol*β€˜π‘₯) ↔ (seq1( + , 𝐻)β€˜π‘˜) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
7973, 78mpbid 231 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) ∧ π‘˜ ∈ β„•) β†’ (seq1( + , 𝐻)β€˜π‘˜) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
8079ralrimiva 3146 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ βˆ€π‘˜ ∈ β„• (seq1( + , 𝐻)β€˜π‘˜) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
81 ffn 6717 . . . . . . . . . . 11 (seq1( + , 𝐻):β„•βŸΆβ„ β†’ seq1( + , 𝐻) Fn β„•)
82 breq1 5151 . . . . . . . . . . . 12 (𝑧 = (seq1( + , 𝐻)β€˜π‘˜) β†’ (𝑧 ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ↔ (seq1( + , 𝐻)β€˜π‘˜) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
8382ralrn 7089 . . . . . . . . . . 11 (seq1( + , 𝐻) Fn β„• β†’ (βˆ€π‘§ ∈ ran seq1( + , 𝐻)𝑧 ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ↔ βˆ€π‘˜ ∈ β„• (seq1( + , 𝐻)β€˜π‘˜) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
8443, 81, 833syl 18 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (βˆ€π‘§ ∈ ran seq1( + , 𝐻)𝑧 ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ↔ βˆ€π‘˜ ∈ β„• (seq1( + , 𝐻)β€˜π‘˜) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
8580, 84mpbird 256 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ βˆ€π‘§ ∈ ran seq1( + , 𝐻)𝑧 ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
86 supxrleub 13307 . . . . . . . . . 10 ((ran seq1( + , 𝐻) βŠ† ℝ* ∧ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ∈ ℝ*) β†’ (sup(ran seq1( + , 𝐻), ℝ*, < ) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ↔ βˆ€π‘§ ∈ ran seq1( + , 𝐻)𝑧 ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
8746, 51, 86syl2anc 584 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (sup(ran seq1( + , 𝐻), ℝ*, < ) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ↔ βˆ€π‘§ ∈ ran seq1( + , 𝐻)𝑧 ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
8885, 87mpbird 256 . . . . . . . 8 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ sup(ran seq1( + , 𝐻), ℝ*, < ) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
8927, 48, 51, 69, 88xrletrd 13143 . . . . . . 7 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
90 leaddsub 11692 . . . . . . . 8 (((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ∈ ℝ ∧ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)) ∈ ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ (vol*β€˜π‘₯) ↔ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
9118, 23, 49, 90syl3anc 1371 . . . . . . 7 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ (vol*β€˜π‘₯) ↔ (vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) ≀ ((vol*β€˜π‘₯) βˆ’ (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
9289, 91mpbird 256 . . . . . 6 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ (vol*β€˜π‘₯))
9318, 23readdcld 11245 . . . . . . 7 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ∈ ℝ)
9449, 93letri3d 11358 . . . . . 6 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ ((vol*β€˜π‘₯) = ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ↔ ((vol*β€˜π‘₯) ≀ ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ∧ ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))) ≀ (vol*β€˜π‘₯))))
9526, 92, 94mpbir2and 711 . . . . 5 ((πœ‘ ∧ π‘₯ βŠ† ℝ ∧ (vol*β€˜π‘₯) ∈ ℝ) β†’ (vol*β€˜π‘₯) = ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))
96953expia 1121 . . . 4 ((πœ‘ ∧ π‘₯ βŠ† ℝ) β†’ ((vol*β€˜π‘₯) ∈ ℝ β†’ (vol*β€˜π‘₯) = ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
9710, 96sylan2 593 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝒫 ℝ) β†’ ((vol*β€˜π‘₯) ∈ ℝ β†’ (vol*β€˜π‘₯) = ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
9897ralrimiva 3146 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝒫 ℝ((vol*β€˜π‘₯) ∈ ℝ β†’ (vol*β€˜π‘₯) = ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹)))))
99 ismbl 25050 . 2 (βˆͺ ran 𝐹 ∈ dom vol ↔ (βˆͺ ran 𝐹 βŠ† ℝ ∧ βˆ€π‘₯ ∈ 𝒫 ℝ((vol*β€˜π‘₯) ∈ ℝ β†’ (vol*β€˜π‘₯) = ((vol*β€˜(π‘₯ ∩ βˆͺ ran 𝐹)) + (vol*β€˜(π‘₯ βˆ– βˆͺ ran 𝐹))))))
1009, 98, 99sylanbrc 583 1 (πœ‘ β†’ βˆͺ ran 𝐹 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βˆ– cdif 3945   βˆͺ cun 3946   ∩ cin 3947   βŠ† wss 3948  π’« cpw 4602  βˆͺ cuni 4908  βˆͺ ciun 4997  Disj wdisj 5113   class class class wbr 5148   ↦ cmpt 5231  dom cdm 5676  ran crn 5677   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411  supcsup 9437  β„cr 11111  1c1 11113   + caddc 11115  β„*cxr 11249   < clt 11250   ≀ cle 11251   βˆ’ cmin 11446  β„•cn 12214  seqcseq 13968  vol*covol 24986  volcvol 24987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cc 10432  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-n0 12475  df-z 12561  df-uz 12825  df-q 12935  df-rp 12977  df-ioo 13330  df-ico 13332  df-icc 13333  df-fz 13487  df-fzo 13630  df-fl 13759  df-seq 13969  df-exp 14030  df-hash 14293  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-rlim 15435  df-sum 15635  df-ovol 24988  df-vol 24989
This theorem is referenced by:  voliunlem3  25076  iunmbl  25077
  Copyright terms: Public domain W3C validator