MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem2 Structured version   Visualization version   GIF version

Theorem voliunlem2 24448
Description: Lemma for voliun 24451. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (𝜑𝐹:ℕ⟶dom vol)
voliunlem.5 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
voliunlem.6 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
Assertion
Ref Expression
voliunlem2 (𝜑 ran 𝐹 ∈ dom vol)
Distinct variable groups:   𝑖,𝑛,𝑥,𝐹   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑖)   𝐻(𝑥,𝑖,𝑛)

Proof of Theorem voliunlem2
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 voliunlem.3 . . . . 5 (𝜑𝐹:ℕ⟶dom vol)
21frnd 6553 . . . 4 (𝜑 → ran 𝐹 ⊆ dom vol)
3 mblss 24428 . . . . . 6 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
4 velpw 4518 . . . . . 6 (𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
53, 4sylibr 237 . . . . 5 (𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ)
65ssriv 3905 . . . 4 dom vol ⊆ 𝒫 ℝ
72, 6sstrdi 3913 . . 3 (𝜑 → ran 𝐹 ⊆ 𝒫 ℝ)
8 sspwuni 5008 . . 3 (ran 𝐹 ⊆ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
97, 8sylib 221 . 2 (𝜑 ran 𝐹 ⊆ ℝ)
10 elpwi 4522 . . . 4 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
11 inundif 4393 . . . . . . . 8 ((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹)) = 𝑥
1211fveq2i 6720 . . . . . . 7 (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) = (vol*‘𝑥)
13 inss1 4143 . . . . . . . . 9 (𝑥 ran 𝐹) ⊆ 𝑥
14 simp2 1139 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
1513, 14sstrid 3912 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ran 𝐹) ⊆ ℝ)
16 ovolsscl 24383 . . . . . . . . . 10 (((𝑥 ran 𝐹) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
1713, 16mp3an1 1450 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
18173adant1 1132 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
19 difss 4046 . . . . . . . . 9 (𝑥 ran 𝐹) ⊆ 𝑥
2019, 14sstrid 3912 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ran 𝐹) ⊆ ℝ)
21 ovolsscl 24383 . . . . . . . . . 10 (((𝑥 ran 𝐹) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
2219, 21mp3an1 1450 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
23223adant1 1132 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
24 ovolun 24396 . . . . . . . 8 ((((𝑥 ran 𝐹) ⊆ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ) ∧ ((𝑥 ran 𝐹) ⊆ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)) → (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2515, 18, 20, 23, 24syl22anc 839 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2612, 25eqbrtrrid 5089 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2718rexrd 10883 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ*)
28 nnuz 12477 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
29 1zzd 12208 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 1 ∈ ℤ)
30 fveq2 6717 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3130ineq2d 4127 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝑥 ∩ (𝐹𝑛)) = (𝑥 ∩ (𝐹𝑘)))
3231fveq2d 6721 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (vol*‘(𝑥 ∩ (𝐹𝑛))) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
33 voliunlem.6 . . . . . . . . . . . . . . 15 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
34 fvex 6730 . . . . . . . . . . . . . . 15 (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ V
3532, 33, 34fvmpt 6818 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐻𝑘) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
3635adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
37 inss1 4143 . . . . . . . . . . . . . . . 16 (𝑥 ∩ (𝐹𝑘)) ⊆ 𝑥
38 ovolsscl 24383 . . . . . . . . . . . . . . . 16 (((𝑥 ∩ (𝐹𝑘)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
3937, 38mp3an1 1450 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
40393adant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
4140adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
4236, 41eqeltrd 2838 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℝ)
4328, 29, 42serfre 13605 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → seq1( + , 𝐻):ℕ⟶ℝ)
4443frnd 6553 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ran seq1( + , 𝐻) ⊆ ℝ)
45 ressxr 10877 . . . . . . . . . 10 ℝ ⊆ ℝ*
4644, 45sstrdi 3913 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ran seq1( + , 𝐻) ⊆ ℝ*)
47 supxrcl 12905 . . . . . . . . 9 (ran seq1( + , 𝐻) ⊆ ℝ* → sup(ran seq1( + , 𝐻), ℝ*, < ) ∈ ℝ*)
4846, 47syl 17 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → sup(ran seq1( + , 𝐻), ℝ*, < ) ∈ ℝ*)
49 simp3 1140 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ ℝ)
5049, 23resubcld 11260 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ)
5150rexrd 10883 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ*)
52 iunin2 4979 . . . . . . . . . . 11 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛)) = (𝑥 𝑛 ∈ ℕ (𝐹𝑛))
53 ffn 6545 . . . . . . . . . . . . . 14 (𝐹:ℕ⟶dom vol → 𝐹 Fn ℕ)
54 fniunfv 7060 . . . . . . . . . . . . . 14 (𝐹 Fn ℕ → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
551, 53, 543syl 18 . . . . . . . . . . . . 13 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
56553ad2ant1 1135 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
5756ineq2d 4127 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 𝑛 ∈ ℕ (𝐹𝑛)) = (𝑥 ran 𝐹))
5852, 57syl5eq 2790 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛)) = (𝑥 ran 𝐹))
5958fveq2d 6721 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘ 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛))) = (vol*‘(𝑥 ran 𝐹)))
60 eqid 2737 . . . . . . . . . 10 seq1( + , 𝐻) = seq1( + , 𝐻)
61 inss1 4143 . . . . . . . . . . . 12 (𝑥 ∩ (𝐹𝑛)) ⊆ 𝑥
6261, 14sstrid 3912 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∩ (𝐹𝑛)) ⊆ ℝ)
6362adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝑥 ∩ (𝐹𝑛)) ⊆ ℝ)
64 ovolsscl 24383 . . . . . . . . . . . . 13 (((𝑥 ∩ (𝐹𝑛)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
6561, 64mp3an1 1450 . . . . . . . . . . . 12 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
66653adant1 1132 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
6766adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
6860, 33, 63, 67ovoliun 24402 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘ 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛))) ≤ sup(ran seq1( + , 𝐻), ℝ*, < ))
6959, 68eqbrtrrd 5077 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ≤ sup(ran seq1( + , 𝐻), ℝ*, < ))
7013ad2ant1 1135 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝐹:ℕ⟶dom vol)
71 voliunlem.5 . . . . . . . . . . . . . 14 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
72713ad2ant1 1135 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → Disj 𝑖 ∈ ℕ (𝐹𝑖))
7370, 72, 33, 14, 49voliunlem1 24447 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))
7443ffvelrnda 6904 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) ∈ ℝ)
7523adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
76 simpl3 1195 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘𝑥) ∈ ℝ)
77 leaddsub 11308 . . . . . . . . . . . . 13 (((seq1( + , 𝐻)‘𝑘) ∈ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
7874, 75, 76, 77syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
7973, 78mpbid 235 . . . . . . . . . . 11 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
8079ralrimiva 3105 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
81 ffn 6545 . . . . . . . . . . 11 (seq1( + , 𝐻):ℕ⟶ℝ → seq1( + , 𝐻) Fn ℕ)
82 breq1 5056 . . . . . . . . . . . 12 (𝑧 = (seq1( + , 𝐻)‘𝑘) → (𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8382ralrn 6907 . . . . . . . . . . 11 (seq1( + , 𝐻) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8443, 81, 833syl 18 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8580, 84mpbird 260 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
86 supxrleub 12916 . . . . . . . . . 10 ((ran seq1( + , 𝐻) ⊆ ℝ* ∧ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ*) → (sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8746, 51, 86syl2anc 587 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8885, 87mpbird 260 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
8927, 48, 51, 69, 88xrletrd 12752 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
90 leaddsub 11308 . . . . . . . 8 (((vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
9118, 23, 49, 90syl3anc 1373 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
9289, 91mpbird 260 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))
9318, 23readdcld 10862 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ∈ ℝ)
9449, 93letri3d 10974 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ↔ ((vol*‘𝑥) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ∧ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))))
9526, 92, 94mpbir2and 713 . . . . 5 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
96953expia 1123 . . . 4 ((𝜑𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
9710, 96sylan2 596 . . 3 ((𝜑𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
9897ralrimiva 3105 . 2 (𝜑 → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
99 ismbl 24423 . 2 ( ran 𝐹 ∈ dom vol ↔ ( ran 𝐹 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))))
1009, 98, 99sylanbrc 586 1 (𝜑 ran 𝐹 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  cdif 3863  cun 3864  cin 3865  wss 3866  𝒫 cpw 4513   cuni 4819   ciun 4904  Disj wdisj 5018   class class class wbr 5053  cmpt 5135  dom cdm 5551  ran crn 5552   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  supcsup 9056  cr 10728  1c1 10730   + caddc 10732  *cxr 10866   < clt 10867  cle 10868  cmin 11062  cn 11830  seqcseq 13574  vol*covol 24359  volcvol 24360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cc 10049  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-ioo 12939  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-ovol 24361  df-vol 24362
This theorem is referenced by:  voliunlem3  24449  iunmbl  24450
  Copyright terms: Public domain W3C validator