MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem2 Structured version   Visualization version   GIF version

Theorem voliunlem2 24155
Description: Lemma for voliun 24158. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (𝜑𝐹:ℕ⟶dom vol)
voliunlem.5 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
voliunlem.6 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
Assertion
Ref Expression
voliunlem2 (𝜑 ran 𝐹 ∈ dom vol)
Distinct variable groups:   𝑖,𝑛,𝑥,𝐹   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑖)   𝐻(𝑥,𝑖,𝑛)

Proof of Theorem voliunlem2
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 voliunlem.3 . . . . 5 (𝜑𝐹:ℕ⟶dom vol)
21frnd 6494 . . . 4 (𝜑 → ran 𝐹 ⊆ dom vol)
3 mblss 24135 . . . . . 6 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
4 velpw 4502 . . . . . 6 (𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
53, 4sylibr 237 . . . . 5 (𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ)
65ssriv 3919 . . . 4 dom vol ⊆ 𝒫 ℝ
72, 6sstrdi 3927 . . 3 (𝜑 → ran 𝐹 ⊆ 𝒫 ℝ)
8 sspwuni 4985 . . 3 (ran 𝐹 ⊆ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
97, 8sylib 221 . 2 (𝜑 ran 𝐹 ⊆ ℝ)
10 elpwi 4506 . . . 4 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
11 inundif 4385 . . . . . . . 8 ((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹)) = 𝑥
1211fveq2i 6648 . . . . . . 7 (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) = (vol*‘𝑥)
13 inss1 4155 . . . . . . . . 9 (𝑥 ran 𝐹) ⊆ 𝑥
14 simp2 1134 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
1513, 14sstrid 3926 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ran 𝐹) ⊆ ℝ)
16 ovolsscl 24090 . . . . . . . . . 10 (((𝑥 ran 𝐹) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
1713, 16mp3an1 1445 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
18173adant1 1127 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
19 difss 4059 . . . . . . . . 9 (𝑥 ran 𝐹) ⊆ 𝑥
2019, 14sstrid 3926 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ran 𝐹) ⊆ ℝ)
21 ovolsscl 24090 . . . . . . . . . 10 (((𝑥 ran 𝐹) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
2219, 21mp3an1 1445 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
23223adant1 1127 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
24 ovolun 24103 . . . . . . . 8 ((((𝑥 ran 𝐹) ⊆ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ) ∧ ((𝑥 ran 𝐹) ⊆ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)) → (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2515, 18, 20, 23, 24syl22anc 837 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2612, 25eqbrtrrid 5066 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2718rexrd 10680 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ*)
28 nnuz 12269 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
29 1zzd 12001 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 1 ∈ ℤ)
30 fveq2 6645 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3130ineq2d 4139 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝑥 ∩ (𝐹𝑛)) = (𝑥 ∩ (𝐹𝑘)))
3231fveq2d 6649 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (vol*‘(𝑥 ∩ (𝐹𝑛))) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
33 voliunlem.6 . . . . . . . . . . . . . . 15 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
34 fvex 6658 . . . . . . . . . . . . . . 15 (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ V
3532, 33, 34fvmpt 6745 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐻𝑘) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
3635adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
37 inss1 4155 . . . . . . . . . . . . . . . 16 (𝑥 ∩ (𝐹𝑘)) ⊆ 𝑥
38 ovolsscl 24090 . . . . . . . . . . . . . . . 16 (((𝑥 ∩ (𝐹𝑘)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
3937, 38mp3an1 1445 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
40393adant1 1127 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
4140adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
4236, 41eqeltrd 2890 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℝ)
4328, 29, 42serfre 13395 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → seq1( + , 𝐻):ℕ⟶ℝ)
4443frnd 6494 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ran seq1( + , 𝐻) ⊆ ℝ)
45 ressxr 10674 . . . . . . . . . 10 ℝ ⊆ ℝ*
4644, 45sstrdi 3927 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ran seq1( + , 𝐻) ⊆ ℝ*)
47 supxrcl 12696 . . . . . . . . 9 (ran seq1( + , 𝐻) ⊆ ℝ* → sup(ran seq1( + , 𝐻), ℝ*, < ) ∈ ℝ*)
4846, 47syl 17 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → sup(ran seq1( + , 𝐻), ℝ*, < ) ∈ ℝ*)
49 simp3 1135 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ ℝ)
5049, 23resubcld 11057 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ)
5150rexrd 10680 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ*)
52 iunin2 4956 . . . . . . . . . . 11 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛)) = (𝑥 𝑛 ∈ ℕ (𝐹𝑛))
53 ffn 6487 . . . . . . . . . . . . . 14 (𝐹:ℕ⟶dom vol → 𝐹 Fn ℕ)
54 fniunfv 6984 . . . . . . . . . . . . . 14 (𝐹 Fn ℕ → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
551, 53, 543syl 18 . . . . . . . . . . . . 13 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
56553ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
5756ineq2d 4139 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 𝑛 ∈ ℕ (𝐹𝑛)) = (𝑥 ran 𝐹))
5852, 57syl5eq 2845 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛)) = (𝑥 ran 𝐹))
5958fveq2d 6649 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘ 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛))) = (vol*‘(𝑥 ran 𝐹)))
60 eqid 2798 . . . . . . . . . 10 seq1( + , 𝐻) = seq1( + , 𝐻)
61 inss1 4155 . . . . . . . . . . . 12 (𝑥 ∩ (𝐹𝑛)) ⊆ 𝑥
6261, 14sstrid 3926 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∩ (𝐹𝑛)) ⊆ ℝ)
6362adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝑥 ∩ (𝐹𝑛)) ⊆ ℝ)
64 ovolsscl 24090 . . . . . . . . . . . . 13 (((𝑥 ∩ (𝐹𝑛)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
6561, 64mp3an1 1445 . . . . . . . . . . . 12 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
66653adant1 1127 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
6766adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
6860, 33, 63, 67ovoliun 24109 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘ 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛))) ≤ sup(ran seq1( + , 𝐻), ℝ*, < ))
6959, 68eqbrtrrd 5054 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ≤ sup(ran seq1( + , 𝐻), ℝ*, < ))
7013ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝐹:ℕ⟶dom vol)
71 voliunlem.5 . . . . . . . . . . . . . 14 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
72713ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → Disj 𝑖 ∈ ℕ (𝐹𝑖))
7370, 72, 33, 14, 49voliunlem1 24154 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))
7443ffvelrnda 6828 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) ∈ ℝ)
7523adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
76 simpl3 1190 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘𝑥) ∈ ℝ)
77 leaddsub 11105 . . . . . . . . . . . . 13 (((seq1( + , 𝐻)‘𝑘) ∈ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
7874, 75, 76, 77syl3anc 1368 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
7973, 78mpbid 235 . . . . . . . . . . 11 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
8079ralrimiva 3149 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
81 ffn 6487 . . . . . . . . . . 11 (seq1( + , 𝐻):ℕ⟶ℝ → seq1( + , 𝐻) Fn ℕ)
82 breq1 5033 . . . . . . . . . . . 12 (𝑧 = (seq1( + , 𝐻)‘𝑘) → (𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8382ralrn 6831 . . . . . . . . . . 11 (seq1( + , 𝐻) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8443, 81, 833syl 18 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8580, 84mpbird 260 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
86 supxrleub 12707 . . . . . . . . . 10 ((ran seq1( + , 𝐻) ⊆ ℝ* ∧ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ*) → (sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8746, 51, 86syl2anc 587 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8885, 87mpbird 260 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
8927, 48, 51, 69, 88xrletrd 12543 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
90 leaddsub 11105 . . . . . . . 8 (((vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
9118, 23, 49, 90syl3anc 1368 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
9289, 91mpbird 260 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))
9318, 23readdcld 10659 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ∈ ℝ)
9449, 93letri3d 10771 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ↔ ((vol*‘𝑥) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ∧ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))))
9526, 92, 94mpbir2and 712 . . . . 5 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
96953expia 1118 . . . 4 ((𝜑𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
9710, 96sylan2 595 . . 3 ((𝜑𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
9897ralrimiva 3149 . 2 (𝜑 → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
99 ismbl 24130 . 2 ( ran 𝐹 ∈ dom vol ↔ ( ran 𝐹 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))))
1009, 98, 99sylanbrc 586 1 (𝜑 ran 𝐹 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cdif 3878  cun 3879  cin 3880  wss 3881  𝒫 cpw 4497   cuni 4800   ciun 4881  Disj wdisj 4995   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  supcsup 8888  cr 10525  1c1 10527   + caddc 10529  *cxr 10663   < clt 10664  cle 10665  cmin 10859  cn 11625  seqcseq 13364  vol*covol 24066  volcvol 24067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-ovol 24068  df-vol 24069
This theorem is referenced by:  voliunlem3  24156  iunmbl  24157
  Copyright terms: Public domain W3C validator