MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem2 Structured version   Visualization version   GIF version

Theorem voliunlem2 25605
Description: Lemma for voliun 25608. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (𝜑𝐹:ℕ⟶dom vol)
voliunlem.5 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
voliunlem.6 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
Assertion
Ref Expression
voliunlem2 (𝜑 ran 𝐹 ∈ dom vol)
Distinct variable groups:   𝑖,𝑛,𝑥,𝐹   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑖)   𝐻(𝑥,𝑖,𝑛)

Proof of Theorem voliunlem2
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 voliunlem.3 . . . . 5 (𝜑𝐹:ℕ⟶dom vol)
21frnd 6755 . . . 4 (𝜑 → ran 𝐹 ⊆ dom vol)
3 mblss 25585 . . . . . 6 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
4 velpw 4627 . . . . . 6 (𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
53, 4sylibr 234 . . . . 5 (𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ)
65ssriv 4012 . . . 4 dom vol ⊆ 𝒫 ℝ
72, 6sstrdi 4021 . . 3 (𝜑 → ran 𝐹 ⊆ 𝒫 ℝ)
8 sspwuni 5123 . . 3 (ran 𝐹 ⊆ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
97, 8sylib 218 . 2 (𝜑 ran 𝐹 ⊆ ℝ)
10 elpwi 4629 . . . 4 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
11 inundif 4502 . . . . . . . 8 ((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹)) = 𝑥
1211fveq2i 6923 . . . . . . 7 (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) = (vol*‘𝑥)
13 inss1 4258 . . . . . . . . 9 (𝑥 ran 𝐹) ⊆ 𝑥
14 simp2 1137 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
1513, 14sstrid 4020 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ran 𝐹) ⊆ ℝ)
16 ovolsscl 25540 . . . . . . . . . 10 (((𝑥 ran 𝐹) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
1713, 16mp3an1 1448 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
18173adant1 1130 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
19 difss 4159 . . . . . . . . 9 (𝑥 ran 𝐹) ⊆ 𝑥
2019, 14sstrid 4020 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ran 𝐹) ⊆ ℝ)
21 ovolsscl 25540 . . . . . . . . . 10 (((𝑥 ran 𝐹) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
2219, 21mp3an1 1448 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
23223adant1 1130 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
24 ovolun 25553 . . . . . . . 8 ((((𝑥 ran 𝐹) ⊆ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ) ∧ ((𝑥 ran 𝐹) ⊆ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)) → (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2515, 18, 20, 23, 24syl22anc 838 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2612, 25eqbrtrrid 5202 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2718rexrd 11340 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ*)
28 nnuz 12946 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
29 1zzd 12674 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 1 ∈ ℤ)
30 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3130ineq2d 4241 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝑥 ∩ (𝐹𝑛)) = (𝑥 ∩ (𝐹𝑘)))
3231fveq2d 6924 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (vol*‘(𝑥 ∩ (𝐹𝑛))) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
33 voliunlem.6 . . . . . . . . . . . . . . 15 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
34 fvex 6933 . . . . . . . . . . . . . . 15 (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ V
3532, 33, 34fvmpt 7029 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐻𝑘) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
3635adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
37 inss1 4258 . . . . . . . . . . . . . . . 16 (𝑥 ∩ (𝐹𝑘)) ⊆ 𝑥
38 ovolsscl 25540 . . . . . . . . . . . . . . . 16 (((𝑥 ∩ (𝐹𝑘)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
3937, 38mp3an1 1448 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
40393adant1 1130 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
4140adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
4236, 41eqeltrd 2844 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℝ)
4328, 29, 42serfre 14082 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → seq1( + , 𝐻):ℕ⟶ℝ)
4443frnd 6755 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ran seq1( + , 𝐻) ⊆ ℝ)
45 ressxr 11334 . . . . . . . . . 10 ℝ ⊆ ℝ*
4644, 45sstrdi 4021 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ran seq1( + , 𝐻) ⊆ ℝ*)
47 supxrcl 13377 . . . . . . . . 9 (ran seq1( + , 𝐻) ⊆ ℝ* → sup(ran seq1( + , 𝐻), ℝ*, < ) ∈ ℝ*)
4846, 47syl 17 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → sup(ran seq1( + , 𝐻), ℝ*, < ) ∈ ℝ*)
49 simp3 1138 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ ℝ)
5049, 23resubcld 11718 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ)
5150rexrd 11340 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ*)
52 iunin2 5094 . . . . . . . . . . 11 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛)) = (𝑥 𝑛 ∈ ℕ (𝐹𝑛))
53 ffn 6747 . . . . . . . . . . . . . 14 (𝐹:ℕ⟶dom vol → 𝐹 Fn ℕ)
54 fniunfv 7284 . . . . . . . . . . . . . 14 (𝐹 Fn ℕ → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
551, 53, 543syl 18 . . . . . . . . . . . . 13 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
56553ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
5756ineq2d 4241 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 𝑛 ∈ ℕ (𝐹𝑛)) = (𝑥 ran 𝐹))
5852, 57eqtrid 2792 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛)) = (𝑥 ran 𝐹))
5958fveq2d 6924 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘ 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛))) = (vol*‘(𝑥 ran 𝐹)))
60 eqid 2740 . . . . . . . . . 10 seq1( + , 𝐻) = seq1( + , 𝐻)
61 inss1 4258 . . . . . . . . . . . 12 (𝑥 ∩ (𝐹𝑛)) ⊆ 𝑥
6261, 14sstrid 4020 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∩ (𝐹𝑛)) ⊆ ℝ)
6362adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝑥 ∩ (𝐹𝑛)) ⊆ ℝ)
64 ovolsscl 25540 . . . . . . . . . . . . 13 (((𝑥 ∩ (𝐹𝑛)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
6561, 64mp3an1 1448 . . . . . . . . . . . 12 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
66653adant1 1130 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
6766adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
6860, 33, 63, 67ovoliun 25559 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘ 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛))) ≤ sup(ran seq1( + , 𝐻), ℝ*, < ))
6959, 68eqbrtrrd 5190 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ≤ sup(ran seq1( + , 𝐻), ℝ*, < ))
7013ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝐹:ℕ⟶dom vol)
71 voliunlem.5 . . . . . . . . . . . . . 14 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
72713ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → Disj 𝑖 ∈ ℕ (𝐹𝑖))
7370, 72, 33, 14, 49voliunlem1 25604 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))
7443ffvelcdmda 7118 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) ∈ ℝ)
7523adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
76 simpl3 1193 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘𝑥) ∈ ℝ)
77 leaddsub 11766 . . . . . . . . . . . . 13 (((seq1( + , 𝐻)‘𝑘) ∈ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
7874, 75, 76, 77syl3anc 1371 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
7973, 78mpbid 232 . . . . . . . . . . 11 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
8079ralrimiva 3152 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
81 ffn 6747 . . . . . . . . . . 11 (seq1( + , 𝐻):ℕ⟶ℝ → seq1( + , 𝐻) Fn ℕ)
82 breq1 5169 . . . . . . . . . . . 12 (𝑧 = (seq1( + , 𝐻)‘𝑘) → (𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8382ralrn 7122 . . . . . . . . . . 11 (seq1( + , 𝐻) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8443, 81, 833syl 18 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8580, 84mpbird 257 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
86 supxrleub 13388 . . . . . . . . . 10 ((ran seq1( + , 𝐻) ⊆ ℝ* ∧ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ*) → (sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8746, 51, 86syl2anc 583 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8885, 87mpbird 257 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
8927, 48, 51, 69, 88xrletrd 13224 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
90 leaddsub 11766 . . . . . . . 8 (((vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
9118, 23, 49, 90syl3anc 1371 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
9289, 91mpbird 257 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))
9318, 23readdcld 11319 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ∈ ℝ)
9449, 93letri3d 11432 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ↔ ((vol*‘𝑥) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ∧ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))))
9526, 92, 94mpbir2and 712 . . . . 5 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
96953expia 1121 . . . 4 ((𝜑𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
9710, 96sylan2 592 . . 3 ((𝜑𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
9897ralrimiva 3152 . 2 (𝜑 → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
99 ismbl 25580 . 2 ( ran 𝐹 ∈ dom vol ↔ ( ran 𝐹 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))))
1009, 98, 99sylanbrc 582 1 (𝜑 ran 𝐹 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cdif 3973  cun 3974  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931   ciun 5015  Disj wdisj 5133   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cr 11183  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  cmin 11520  cn 12293  seqcseq 14052  vol*covol 25516  volcvol 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-ovol 25518  df-vol 25519
This theorem is referenced by:  voliunlem3  25606  iunmbl  25607
  Copyright terms: Public domain W3C validator