MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumiun Structured version   Visualization version   GIF version

Theorem fsumiun 15176
Description: Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
Hypotheses
Ref Expression
fsumiun.1 (𝜑𝐴 ∈ Fin)
fsumiun.2 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
fsumiun.3 (𝜑Disj 𝑥𝐴 𝐵)
fsumiun.4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumiun (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘   𝜑,𝑘,𝑥   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)

Proof of Theorem fsumiun
Dummy variables 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3989 . 2 𝐴𝐴
2 fsumiun.1 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3992 . . . . . 6 (𝑢 = ∅ → (𝑢𝐴 ↔ ∅ ⊆ 𝐴))
4 iuneq1 4935 . . . . . . . . 9 (𝑢 = ∅ → 𝑥𝑢 𝐵 = 𝑥 ∈ ∅ 𝐵)
5 0iun 4986 . . . . . . . . 9 𝑥 ∈ ∅ 𝐵 = ∅
64, 5syl6eq 2872 . . . . . . . 8 (𝑢 = ∅ → 𝑥𝑢 𝐵 = ∅)
76sumeq1d 15058 . . . . . . 7 (𝑢 = ∅ → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 ∈ ∅ 𝐶)
8 sumeq1 15045 . . . . . . 7 (𝑢 = ∅ → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶)
97, 8eqeq12d 2837 . . . . . 6 (𝑢 = ∅ → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))
103, 9imbi12d 347 . . . . 5 (𝑢 = ∅ → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶)))
1110imbi2d 343 . . . 4 (𝑢 = ∅ → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))))
12 sseq1 3992 . . . . . 6 (𝑢 = 𝑧 → (𝑢𝐴𝑧𝐴))
13 iuneq1 4935 . . . . . . . 8 (𝑢 = 𝑧 𝑥𝑢 𝐵 = 𝑥𝑧 𝐵)
1413sumeq1d 15058 . . . . . . 7 (𝑢 = 𝑧 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥𝑧 𝐵𝐶)
15 sumeq1 15045 . . . . . . 7 (𝑢 = 𝑧 → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)
1614, 15eqeq12d 2837 . . . . . 6 (𝑢 = 𝑧 → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))
1712, 16imbi12d 347 . . . . 5 (𝑢 = 𝑧 → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)))
1817imbi2d 343 . . . 4 (𝑢 = 𝑧 → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))))
19 sseq1 3992 . . . . . 6 (𝑢 = (𝑧 ∪ {𝑤}) → (𝑢𝐴 ↔ (𝑧 ∪ {𝑤}) ⊆ 𝐴))
20 iuneq1 4935 . . . . . . . 8 (𝑢 = (𝑧 ∪ {𝑤}) → 𝑥𝑢 𝐵 = 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵)
2120sumeq1d 15058 . . . . . . 7 (𝑢 = (𝑧 ∪ {𝑤}) → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶)
22 sumeq1 15045 . . . . . . 7 (𝑢 = (𝑧 ∪ {𝑤}) → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)
2321, 22eqeq12d 2837 . . . . . 6 (𝑢 = (𝑧 ∪ {𝑤}) → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))
2419, 23imbi12d 347 . . . . 5 (𝑢 = (𝑧 ∪ {𝑤}) → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
2524imbi2d 343 . . . 4 (𝑢 = (𝑧 ∪ {𝑤}) → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
26 sseq1 3992 . . . . . 6 (𝑢 = 𝐴 → (𝑢𝐴𝐴𝐴))
27 iuneq1 4935 . . . . . . . 8 (𝑢 = 𝐴 𝑥𝑢 𝐵 = 𝑥𝐴 𝐵)
2827sumeq1d 15058 . . . . . . 7 (𝑢 = 𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥𝐴 𝐵𝐶)
29 sumeq1 15045 . . . . . . 7 (𝑢 = 𝐴 → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
3028, 29eqeq12d 2837 . . . . . 6 (𝑢 = 𝐴 → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))
3126, 30imbi12d 347 . . . . 5 (𝑢 = 𝐴 → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)))
3231imbi2d 343 . . . 4 (𝑢 = 𝐴 → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))))
33 sum0 15078 . . . . . 6 Σ𝑘 ∈ ∅ 𝐶 = 0
34 sum0 15078 . . . . . 6 Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶 = 0
3533, 34eqtr4i 2847 . . . . 5 Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶
36352a1i 12 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))
37 id 22 . . . . . . . . . 10 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (𝑧 ∪ {𝑤}) ⊆ 𝐴)
3837unssad 4163 . . . . . . . . 9 ((𝑧 ∪ {𝑤}) ⊆ 𝐴𝑧𝐴)
3938imim1i 63 . . . . . . . 8 ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))
40 oveq1 7163 . . . . . . . . . . 11 𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
41 nfcv 2977 . . . . . . . . . . . . . . . . 17 𝑧𝐵
42 nfcsb1v 3907 . . . . . . . . . . . . . . . . 17 𝑥𝑧 / 𝑥𝐵
43 csbeq1a 3897 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
4441, 42, 43cbviun 4961 . . . . . . . . . . . . . . . 16 𝑥 ∈ {𝑤}𝐵 = 𝑧 ∈ {𝑤}𝑧 / 𝑥𝐵
45 vex 3497 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
46 csbeq1 3886 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤𝑧 / 𝑥𝐵 = 𝑤 / 𝑥𝐵)
4745, 46iunxsn 5013 . . . . . . . . . . . . . . . 16 𝑧 ∈ {𝑤}𝑧 / 𝑥𝐵 = 𝑤 / 𝑥𝐵
4844, 47eqtri 2844 . . . . . . . . . . . . . . 15 𝑥 ∈ {𝑤}𝐵 = 𝑤 / 𝑥𝐵
4948ineq2i 4186 . . . . . . . . . . . . . 14 ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
50 fsumiun.3 . . . . . . . . . . . . . . . 16 (𝜑Disj 𝑥𝐴 𝐵)
5150ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Disj 𝑥𝐴 𝐵)
5238adantl 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑧𝐴)
53 simpr 487 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) ⊆ 𝐴)
5453unssbd 4164 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → {𝑤} ⊆ 𝐴)
55 simplr 767 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ¬ 𝑤𝑧)
56 disjsn 4647 . . . . . . . . . . . . . . . 16 ((𝑧 ∩ {𝑤}) = ∅ ↔ ¬ 𝑤𝑧)
5755, 56sylibr 236 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∩ {𝑤}) = ∅)
58 disjiun 5053 . . . . . . . . . . . . . . 15 ((Disj 𝑥𝐴 𝐵 ∧ (𝑧𝐴 ∧ {𝑤} ⊆ 𝐴 ∧ (𝑧 ∩ {𝑤}) = ∅)) → ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ∅)
5951, 52, 54, 57, 58syl13anc 1368 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ∅)
6049, 59syl5eqr 2870 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵) = ∅)
61 iunxun 5016 . . . . . . . . . . . . . . 15 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵)
6248uneq2i 4136 . . . . . . . . . . . . . . 15 ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
6361, 62eqtri 2844 . . . . . . . . . . . . . 14 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
6463a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵))
652ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝐴 ∈ Fin)
6665, 53ssfid 8741 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) ∈ Fin)
67 fsumiun.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
6867ralrimiva 3182 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴 𝐵 ∈ Fin)
6968ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥𝐴 𝐵 ∈ Fin)
70 ssralv 4033 . . . . . . . . . . . . . . 15 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (∀𝑥𝐴 𝐵 ∈ Fin → ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin))
7153, 69, 70sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
72 iunfi 8812 . . . . . . . . . . . . . 14 (((𝑧 ∪ {𝑤}) ∈ Fin ∧ ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
7366, 71, 72syl2anc 586 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
74 iunss1 4933 . . . . . . . . . . . . . . . 16 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 𝑥𝐴 𝐵)
7574adantl 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 𝑥𝐴 𝐵)
7675sselda 3967 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵) → 𝑘 𝑥𝐴 𝐵)
77 eliun 4923 . . . . . . . . . . . . . . . 16 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
78 fsumiun.4 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
7978rexlimdvaa 3285 . . . . . . . . . . . . . . . . 17 (𝜑 → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ ℂ))
8079ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ ℂ))
8177, 80syl5bi 244 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑘 𝑥𝐴 𝐵𝐶 ∈ ℂ))
8281imp 409 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ ℂ)
8376, 82syldan 593 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵) → 𝐶 ∈ ℂ)
8460, 64, 73, 83fsumsplit 15097 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
85 eqidd 2822 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) = (𝑧 ∪ {𝑤}))
8653sselda 3967 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → 𝑥𝐴)
8778anassrs 470 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
8867, 87fsumcl 15090 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → Σ𝑘𝐵 𝐶 ∈ ℂ)
8988ralrimiva 3182 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ)
9089ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ)
9190r19.21bi 3208 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥𝐴) → Σ𝑘𝐵 𝐶 ∈ ℂ)
9286, 91syldan 593 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → Σ𝑘𝐵 𝐶 ∈ ℂ)
9357, 85, 66, 92fsumsplit 15097 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶))
94 nfcv 2977 . . . . . . . . . . . . . . . 16 𝑧Σ𝑘𝐵 𝐶
95 nfcv 2977 . . . . . . . . . . . . . . . . 17 𝑥𝐶
9642, 95nfsumw 15047 . . . . . . . . . . . . . . . 16 𝑥Σ𝑘 𝑧 / 𝑥𝐵𝐶
9743sumeq1d 15058 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → Σ𝑘𝐵 𝐶 = Σ𝑘 𝑧 / 𝑥𝐵𝐶)
9894, 96, 97cbvsumi 15054 . . . . . . . . . . . . . . 15 Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶 = Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶
9945snss 4718 . . . . . . . . . . . . . . . . . 18 (𝑤𝐴 ↔ {𝑤} ⊆ 𝐴)
10054, 99sylibr 236 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑤𝐴)
101 nfcsb1v 3907 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑤 / 𝑥𝐵
102101, 95nfsumw 15047 . . . . . . . . . . . . . . . . . . 19 𝑥Σ𝑘 𝑤 / 𝑥𝐵𝐶
103102nfel1 2994 . . . . . . . . . . . . . . . . . 18 𝑥Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ
104 csbeq1a 3897 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
105104sumeq1d 15058 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → Σ𝑘𝐵 𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
106105eleq1d 2897 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (Σ𝑘𝐵 𝐶 ∈ ℂ ↔ Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ))
107103, 106rspc 3611 . . . . . . . . . . . . . . . . 17 (𝑤𝐴 → (∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ → Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ))
108100, 90, 107sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ)
10946sumeq1d 15058 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → Σ𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
110109sumsn 15101 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ V ∧ Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ) → Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
11145, 108, 110sylancr 589 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
11298, 111syl5eq 2868 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
113112oveq2d 7172 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
11493, 113eqtrd 2856 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
11584, 114eqeq12d 2837 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 ↔ (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶)))
11640, 115syl5ibr 248 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))
117116ex 415 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑤𝑧) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
118117a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑤𝑧) → (((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
11939, 118syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑤𝑧) → ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
120119expcom 416 . . . . . 6 𝑤𝑧 → (𝜑 → ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
121120a2d 29 . . . . 5 𝑤𝑧 → ((𝜑 → (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)) → (𝜑 → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
122121adantl 484 . . . 4 ((𝑧 ∈ Fin ∧ ¬ 𝑤𝑧) → ((𝜑 → (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)) → (𝜑 → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
12311, 18, 25, 32, 36, 122findcard2s 8759 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)))
1242, 123mpcom 38 . 2 (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))
1251, 124mpi 20 1 (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  csb 3883  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4567   ciun 4919  Disj wdisj 5031  (class class class)co 7156  Fincfn 8509  cc 10535  0cc0 10537   + caddc 10540  Σcsu 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043
This theorem is referenced by:  hashiun  15177  incexc2  15193  musum  25768  breprexplema  31901  fsumiunss  41876
  Copyright terms: Public domain W3C validator