Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caratheodorylem2 Structured version   Visualization version   GIF version

Theorem caratheodorylem2 46448
Description: Caratheodory's construction is sigma-additive. Main part of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caratheodorylem2.o (𝜑𝑂 ∈ OutMeas)
caratheodorylem2.x 𝑋 = dom 𝑂
caratheodorylem2.s 𝑆 = (CaraGen‘𝑂)
caratheodorylem2.e (𝜑𝐸:ℕ⟶𝑆)
caratheodorylem2.5 (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
caratheodorylem2.g 𝐺 = (𝑘 ∈ ℕ ↦ 𝑛 ∈ (1...𝑘)(𝐸𝑛))
Assertion
Ref Expression
caratheodorylem2 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))))
Distinct variable groups:   𝑘,𝐸,𝑛   𝑛,𝐺   𝑘,𝑂,𝑛   𝑛,𝑋   𝜑,𝑘,𝑛
Allowed substitution hints:   𝑆(𝑘,𝑛)   𝐺(𝑘)   𝑋(𝑘)

Proof of Theorem caratheodorylem2
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caratheodorylem2.o . . 3 (𝜑𝑂 ∈ OutMeas)
2 caratheodorylem2.x . . 3 𝑋 = dom 𝑂
3 caratheodorylem2.s . . . . . . . . . . 11 𝑆 = (CaraGen‘𝑂)
43caragenss 46425 . . . . . . . . . 10 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
51, 4syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ dom 𝑂)
65adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑆 ⊆ dom 𝑂)
7 caratheodorylem2.e . . . . . . . . 9 (𝜑𝐸:ℕ⟶𝑆)
87ffvelcdmda 7118 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ 𝑆)
96, 8sseldd 4009 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ dom 𝑂)
10 elssuni 4961 . . . . . . 7 ((𝐸𝑛) ∈ dom 𝑂 → (𝐸𝑛) ⊆ dom 𝑂)
119, 10syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ⊆ dom 𝑂)
1211, 2sseqtrrdi 4060 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ⊆ 𝑋)
1312ralrimiva 3152 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
14 iunss 5068 . . . 4 ( 𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋 ↔ ∀𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
1513, 14sylibr 234 . . 3 (𝜑 𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
161, 2, 15omexrcl 46428 . 2 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
17 nnex 12299 . . . 4 ℕ ∈ V
1817a1i 11 . . 3 (𝜑 → ℕ ∈ V)
191adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑂 ∈ OutMeas)
2019, 2, 12omecl 46424 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
21 eqid 2740 . . . 4 (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))
2220, 21fmptd 7148 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))):ℕ⟶(0[,]+∞))
2318, 22sge0xrcl 46306 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
24 nfv 1913 . . 3 𝑛𝜑
25 nfcv 2908 . . 3 𝑛𝐸
26 nnuz 12946 . . 3 ℕ = (ℤ‘1)
271, 2, 3caragensspw 46430 . . . 4 (𝜑𝑆 ⊆ 𝒫 𝑋)
287, 27fssd 6764 . . 3 (𝜑𝐸:ℕ⟶𝒫 𝑋)
2924, 25, 1, 2, 26, 28omeiunle 46438 . 2 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))))
30 elpwinss 44951 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → 𝑥 ⊆ ℕ)
3130resmptd 6069 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → ((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥) = (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛))))
3231fveq2d 6924 . . . . . 6 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → (Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) = (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))))
3332adantl 481 . . . . 5 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) = (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))))
34 1zzd 12674 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 1 ∈ ℤ)
3530adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ⊆ ℕ)
36 elinel2 4225 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → 𝑥 ∈ Fin)
3736adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ Fin)
3834, 26, 35, 37uzfissfz 45241 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → ∃𝑘 ∈ ℕ 𝑥 ⊆ (1...𝑘))
39 vex 3492 . . . . . . . . . . . . 13 𝑥 ∈ V
4039a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ (1...𝑘)) → 𝑥 ∈ V)
411ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → 𝑂 ∈ OutMeas)
4228ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → 𝐸:ℕ⟶𝒫 𝑋)
43 fz1ssnn 13615 . . . . . . . . . . . . . . . . . 18 (1...𝑘) ⊆ ℕ
44 ssel2 4003 . . . . . . . . . . . . . . . . . 18 ((𝑥 ⊆ (1...𝑘) ∧ 𝑛𝑥) → 𝑛 ∈ (1...𝑘))
4543, 44sselid 4006 . . . . . . . . . . . . . . . . 17 ((𝑥 ⊆ (1...𝑘) ∧ 𝑛𝑥) → 𝑛 ∈ ℕ)
4645adantll 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → 𝑛 ∈ ℕ)
4742, 46ffvelcdmd 7119 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → (𝐸𝑛) ∈ 𝒫 𝑋)
48 elpwi 4629 . . . . . . . . . . . . . . 15 ((𝐸𝑛) ∈ 𝒫 𝑋 → (𝐸𝑛) ⊆ 𝑋)
4947, 48syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → (𝐸𝑛) ⊆ 𝑋)
5041, 2, 49omecl 46424 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
51 eqid 2740 . . . . . . . . . . . . 13 (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))
5250, 51fmptd 7148 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ (1...𝑘)) → (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛))):𝑥⟶(0[,]+∞))
5340, 52sge0xrcl 46306 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
54533adant2 1131 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
55 ovex 7481 . . . . . . . . . . . . 13 (1...𝑘) ∈ V
5655a1i 11 . . . . . . . . . . . 12 (𝜑 → (1...𝑘) ∈ V)
57 elfznn 13613 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
5857, 20sylan2 592 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑘)) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
59 eqid 2740 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))
6058, 59fmptd 7148 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛))):(1...𝑘)⟶(0[,]+∞))
6156, 60sge0xrcl 46306 . . . . . . . . . . 11 (𝜑 → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
62613ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
63163ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
6455a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (1...𝑘) ∈ V)
65 simpl1 1191 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑)
6657adantl 481 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
6765, 66, 20syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
68 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → 𝑥 ⊆ (1...𝑘))
6964, 67, 68sge0lessmpt 46320 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))))
701adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑂 ∈ OutMeas)
717adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐸:ℕ⟶𝑆)
72 caratheodorylem2.5 . . . . . . . . . . . . . . 15 (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
7372adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → Disj 𝑛 ∈ ℕ (𝐸𝑛))
74 caratheodorylem2.g . . . . . . . . . . . . . . 15 𝐺 = (𝑘 ∈ ℕ ↦ 𝑛 ∈ (1...𝑘)(𝐸𝑛))
75 nfiu1 5050 . . . . . . . . . . . . . . . 16 𝑛 𝑛 ∈ (1...𝑘)(𝐸𝑛)
76 nfcv 2908 . . . . . . . . . . . . . . . 16 𝑘 𝑚 ∈ (1...𝑛)(𝐸𝑚)
77 fveq2 6920 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
7877cbviunv 5063 . . . . . . . . . . . . . . . . . 18 𝑛 ∈ (1...𝑘)(𝐸𝑛) = 𝑚 ∈ (1...𝑘)(𝐸𝑚)
7978a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 𝑛 ∈ (1...𝑘)(𝐸𝑛) = 𝑚 ∈ (1...𝑘)(𝐸𝑚))
80 oveq2 7456 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (1...𝑘) = (1...𝑛))
8180iuneq1d 5042 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 𝑚 ∈ (1...𝑘)(𝐸𝑚) = 𝑚 ∈ (1...𝑛)(𝐸𝑚))
8279, 81eqtrd 2780 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 𝑛 ∈ (1...𝑘)(𝐸𝑛) = 𝑚 ∈ (1...𝑛)(𝐸𝑚))
8375, 76, 82cbvmpt 5277 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ ↦ 𝑛 ∈ (1...𝑘)(𝐸𝑛)) = (𝑛 ∈ ℕ ↦ 𝑚 ∈ (1...𝑛)(𝐸𝑚))
8474, 83eqtri 2768 . . . . . . . . . . . . . 14 𝐺 = (𝑛 ∈ ℕ ↦ 𝑚 ∈ (1...𝑛)(𝐸𝑚))
85 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
8685, 26eleqtrdi 2854 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ (ℤ‘1))
8786adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
8870, 3, 26, 71, 73, 84, 87caratheodorylem1 46447 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑂‘(𝐺𝑘)) = (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))))
8988eqcomd 2746 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) = (𝑂‘(𝐺𝑘)))
9015adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
91 fvex 6933 . . . . . . . . . . . . . . . . 17 (𝐸𝑛) ∈ V
9255, 91iunex 8009 . . . . . . . . . . . . . . . 16 𝑛 ∈ (1...𝑘)(𝐸𝑛) ∈ V
9374fvmpt2 7040 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑘)(𝐸𝑛) ∈ V) → (𝐺𝑘) = 𝑛 ∈ (1...𝑘)(𝐸𝑛))
9485, 92, 93sylancl 585 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝐺𝑘) = 𝑛 ∈ (1...𝑘)(𝐸𝑛))
9543a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (1...𝑘) ⊆ ℕ)
96 iunss1 5029 . . . . . . . . . . . . . . . 16 ((1...𝑘) ⊆ ℕ → 𝑛 ∈ (1...𝑘)(𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
9795, 96syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑛 ∈ (1...𝑘)(𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
9894, 97eqsstrd 4047 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐺𝑘) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
9998adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
10070, 2, 90, 99omessle 46419 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑂‘(𝐺𝑘)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
10189, 100eqbrtrd 5188 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
1021013adant3 1132 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
10354, 62, 63, 69, 102xrletrd 13224 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
1041033exp 1119 . . . . . . . 8 (𝜑 → (𝑘 ∈ ℕ → (𝑥 ⊆ (1...𝑘) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))))
105104adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (𝑘 ∈ ℕ → (𝑥 ⊆ (1...𝑘) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))))
106105rexlimdv 3159 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (∃𝑘 ∈ ℕ 𝑥 ⊆ (1...𝑘) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛))))
10738, 106mpd 15 . . . . 5 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
10833, 107eqbrtrd 5188 . . . 4 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
109108ralrimiva 3152 . . 3 (𝜑 → ∀𝑥 ∈ (𝒫 ℕ ∩ Fin)(Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
11018, 22, 16sge0lefi 46319 . . 3 (𝜑 → ((Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ↔ ∀𝑥 ∈ (𝒫 ℕ ∩ Fin)(Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛))))
111109, 110mpbird 257 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
11216, 23, 29, 111xrletrid 13217 1 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931   ciun 5015  Disj wdisj 5133   class class class wbr 5166  cmpt 5249  dom cdm 5700  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  0cc0 11184  1c1 11185  +∞cpnf 11321  *cxr 11323  cle 11325  cn 12293  cuz 12903  [,]cicc 13410  ...cfz 13567  Σ^csumge0 46283  OutMeascome 46410  CaraGenccaragen 46412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-xadd 13176  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-sumge0 46284  df-ome 46411  df-caragen 46413
This theorem is referenced by:  caratheodory  46449
  Copyright terms: Public domain W3C validator