Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caratheodorylem2 Structured version   Visualization version   GIF version

Theorem caratheodorylem2 46525
Description: Caratheodory's construction is sigma-additive. Main part of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caratheodorylem2.o (𝜑𝑂 ∈ OutMeas)
caratheodorylem2.x 𝑋 = dom 𝑂
caratheodorylem2.s 𝑆 = (CaraGen‘𝑂)
caratheodorylem2.e (𝜑𝐸:ℕ⟶𝑆)
caratheodorylem2.5 (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
caratheodorylem2.g 𝐺 = (𝑘 ∈ ℕ ↦ 𝑛 ∈ (1...𝑘)(𝐸𝑛))
Assertion
Ref Expression
caratheodorylem2 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))))
Distinct variable groups:   𝑘,𝐸,𝑛   𝑛,𝐺   𝑘,𝑂,𝑛   𝑛,𝑋   𝜑,𝑘,𝑛
Allowed substitution hints:   𝑆(𝑘,𝑛)   𝐺(𝑘)   𝑋(𝑘)

Proof of Theorem caratheodorylem2
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caratheodorylem2.o . . 3 (𝜑𝑂 ∈ OutMeas)
2 caratheodorylem2.x . . 3 𝑋 = dom 𝑂
3 caratheodorylem2.s . . . . . . . . . . 11 𝑆 = (CaraGen‘𝑂)
43caragenss 46502 . . . . . . . . . 10 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
51, 4syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ dom 𝑂)
65adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑆 ⊆ dom 𝑂)
7 caratheodorylem2.e . . . . . . . . 9 (𝜑𝐸:ℕ⟶𝑆)
87ffvelcdmda 7056 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ 𝑆)
96, 8sseldd 3947 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ dom 𝑂)
10 elssuni 4901 . . . . . . 7 ((𝐸𝑛) ∈ dom 𝑂 → (𝐸𝑛) ⊆ dom 𝑂)
119, 10syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ⊆ dom 𝑂)
1211, 2sseqtrrdi 3988 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ⊆ 𝑋)
1312ralrimiva 3125 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
14 iunss 5009 . . . 4 ( 𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋 ↔ ∀𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
1513, 14sylibr 234 . . 3 (𝜑 𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
161, 2, 15omexrcl 46505 . 2 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
17 nnex 12192 . . . 4 ℕ ∈ V
1817a1i 11 . . 3 (𝜑 → ℕ ∈ V)
191adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑂 ∈ OutMeas)
2019, 2, 12omecl 46501 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
21 eqid 2729 . . . 4 (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))
2220, 21fmptd 7086 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))):ℕ⟶(0[,]+∞))
2318, 22sge0xrcl 46383 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
24 nfv 1914 . . 3 𝑛𝜑
25 nfcv 2891 . . 3 𝑛𝐸
26 nnuz 12836 . . 3 ℕ = (ℤ‘1)
271, 2, 3caragensspw 46507 . . . 4 (𝜑𝑆 ⊆ 𝒫 𝑋)
287, 27fssd 6705 . . 3 (𝜑𝐸:ℕ⟶𝒫 𝑋)
2924, 25, 1, 2, 26, 28omeiunle 46515 . 2 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))))
30 elpwinss 45043 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → 𝑥 ⊆ ℕ)
3130resmptd 6011 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → ((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥) = (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛))))
3231fveq2d 6862 . . . . . 6 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → (Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) = (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))))
3332adantl 481 . . . . 5 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) = (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))))
34 1zzd 12564 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 1 ∈ ℤ)
3530adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ⊆ ℕ)
36 elinel2 4165 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → 𝑥 ∈ Fin)
3736adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ Fin)
3834, 26, 35, 37uzfissfz 45322 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → ∃𝑘 ∈ ℕ 𝑥 ⊆ (1...𝑘))
39 vex 3451 . . . . . . . . . . . . 13 𝑥 ∈ V
4039a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ (1...𝑘)) → 𝑥 ∈ V)
411ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → 𝑂 ∈ OutMeas)
4228ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → 𝐸:ℕ⟶𝒫 𝑋)
43 fz1ssnn 13516 . . . . . . . . . . . . . . . . . 18 (1...𝑘) ⊆ ℕ
44 ssel2 3941 . . . . . . . . . . . . . . . . . 18 ((𝑥 ⊆ (1...𝑘) ∧ 𝑛𝑥) → 𝑛 ∈ (1...𝑘))
4543, 44sselid 3944 . . . . . . . . . . . . . . . . 17 ((𝑥 ⊆ (1...𝑘) ∧ 𝑛𝑥) → 𝑛 ∈ ℕ)
4645adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → 𝑛 ∈ ℕ)
4742, 46ffvelcdmd 7057 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → (𝐸𝑛) ∈ 𝒫 𝑋)
48 elpwi 4570 . . . . . . . . . . . . . . 15 ((𝐸𝑛) ∈ 𝒫 𝑋 → (𝐸𝑛) ⊆ 𝑋)
4947, 48syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → (𝐸𝑛) ⊆ 𝑋)
5041, 2, 49omecl 46501 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
51 eqid 2729 . . . . . . . . . . . . 13 (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))
5250, 51fmptd 7086 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ (1...𝑘)) → (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛))):𝑥⟶(0[,]+∞))
5340, 52sge0xrcl 46383 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
54533adant2 1131 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
55 ovex 7420 . . . . . . . . . . . . 13 (1...𝑘) ∈ V
5655a1i 11 . . . . . . . . . . . 12 (𝜑 → (1...𝑘) ∈ V)
57 elfznn 13514 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
5857, 20sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑘)) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
59 eqid 2729 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))
6058, 59fmptd 7086 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛))):(1...𝑘)⟶(0[,]+∞))
6156, 60sge0xrcl 46383 . . . . . . . . . . 11 (𝜑 → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
62613ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
63163ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
6455a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (1...𝑘) ∈ V)
65 simpl1 1192 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑)
6657adantl 481 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
6765, 66, 20syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
68 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → 𝑥 ⊆ (1...𝑘))
6964, 67, 68sge0lessmpt 46397 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))))
701adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑂 ∈ OutMeas)
717adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐸:ℕ⟶𝑆)
72 caratheodorylem2.5 . . . . . . . . . . . . . . 15 (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
7372adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → Disj 𝑛 ∈ ℕ (𝐸𝑛))
74 caratheodorylem2.g . . . . . . . . . . . . . . 15 𝐺 = (𝑘 ∈ ℕ ↦ 𝑛 ∈ (1...𝑘)(𝐸𝑛))
75 nfiu1 4991 . . . . . . . . . . . . . . . 16 𝑛 𝑛 ∈ (1...𝑘)(𝐸𝑛)
76 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑘 𝑚 ∈ (1...𝑛)(𝐸𝑚)
77 fveq2 6858 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
7877cbviunv 5004 . . . . . . . . . . . . . . . . . 18 𝑛 ∈ (1...𝑘)(𝐸𝑛) = 𝑚 ∈ (1...𝑘)(𝐸𝑚)
7978a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 𝑛 ∈ (1...𝑘)(𝐸𝑛) = 𝑚 ∈ (1...𝑘)(𝐸𝑚))
80 oveq2 7395 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (1...𝑘) = (1...𝑛))
8180iuneq1d 4983 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 𝑚 ∈ (1...𝑘)(𝐸𝑚) = 𝑚 ∈ (1...𝑛)(𝐸𝑚))
8279, 81eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 𝑛 ∈ (1...𝑘)(𝐸𝑛) = 𝑚 ∈ (1...𝑛)(𝐸𝑚))
8375, 76, 82cbvmpt 5209 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ ↦ 𝑛 ∈ (1...𝑘)(𝐸𝑛)) = (𝑛 ∈ ℕ ↦ 𝑚 ∈ (1...𝑛)(𝐸𝑚))
8474, 83eqtri 2752 . . . . . . . . . . . . . 14 𝐺 = (𝑛 ∈ ℕ ↦ 𝑚 ∈ (1...𝑛)(𝐸𝑚))
85 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
8685, 26eleqtrdi 2838 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ (ℤ‘1))
8786adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
8870, 3, 26, 71, 73, 84, 87caratheodorylem1 46524 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑂‘(𝐺𝑘)) = (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))))
8988eqcomd 2735 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) = (𝑂‘(𝐺𝑘)))
9015adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
91 fvex 6871 . . . . . . . . . . . . . . . . 17 (𝐸𝑛) ∈ V
9255, 91iunex 7947 . . . . . . . . . . . . . . . 16 𝑛 ∈ (1...𝑘)(𝐸𝑛) ∈ V
9374fvmpt2 6979 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑘)(𝐸𝑛) ∈ V) → (𝐺𝑘) = 𝑛 ∈ (1...𝑘)(𝐸𝑛))
9485, 92, 93sylancl 586 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝐺𝑘) = 𝑛 ∈ (1...𝑘)(𝐸𝑛))
9543a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (1...𝑘) ⊆ ℕ)
96 iunss1 4970 . . . . . . . . . . . . . . . 16 ((1...𝑘) ⊆ ℕ → 𝑛 ∈ (1...𝑘)(𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
9795, 96syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑛 ∈ (1...𝑘)(𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
9894, 97eqsstrd 3981 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐺𝑘) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
9998adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
10070, 2, 90, 99omessle 46496 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑂‘(𝐺𝑘)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
10189, 100eqbrtrd 5129 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
1021013adant3 1132 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
10354, 62, 63, 69, 102xrletrd 13122 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
1041033exp 1119 . . . . . . . 8 (𝜑 → (𝑘 ∈ ℕ → (𝑥 ⊆ (1...𝑘) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))))
105104adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (𝑘 ∈ ℕ → (𝑥 ⊆ (1...𝑘) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))))
106105rexlimdv 3132 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (∃𝑘 ∈ ℕ 𝑥 ⊆ (1...𝑘) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛))))
10738, 106mpd 15 . . . . 5 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
10833, 107eqbrtrd 5129 . . . 4 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
109108ralrimiva 3125 . . 3 (𝜑 → ∀𝑥 ∈ (𝒫 ℕ ∩ Fin)(Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
11018, 22, 16sge0lefi 46396 . . 3 (𝜑 → ((Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ↔ ∀𝑥 ∈ (𝒫 ℕ ∩ Fin)(Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛))))
111109, 110mpbird 257 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
11216, 23, 29, 111xrletrid 13115 1 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  cin 3913  wss 3914  𝒫 cpw 4563   cuni 4871   ciun 4955  Disj wdisj 5074   class class class wbr 5107  cmpt 5188  dom cdm 5638  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  0cc0 11068  1c1 11069  +∞cpnf 11205  *cxr 11207  cle 11209  cn 12186  cuz 12793  [,]cicc 13309  ...cfz 13468  Σ^csumge0 46360  OutMeascome 46487  CaraGenccaragen 46489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-xadd 13073  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-sumge0 46361  df-ome 46488  df-caragen 46490
This theorem is referenced by:  caratheodory  46526
  Copyright terms: Public domain W3C validator