Step | Hyp | Ref
| Expression |
1 | | caratheodorylem2.o |
. . 3
⊢ (𝜑 → 𝑂 ∈ OutMeas) |
2 | | caratheodorylem2.x |
. . 3
⊢ 𝑋 = ∪
dom 𝑂 |
3 | | caratheodorylem2.s |
. . . . . . . . . . 11
⊢ 𝑆 = (CaraGen‘𝑂) |
4 | 3 | caragenss 42350 |
. . . . . . . . . 10
⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
5 | 1, 4 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ⊆ dom 𝑂) |
6 | 5 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ⊆ dom 𝑂) |
7 | | caratheodorylem2.e |
. . . . . . . . 9
⊢ (𝜑 → 𝐸:ℕ⟶𝑆) |
8 | 7 | ffvelrnda 6723 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑛) ∈ 𝑆) |
9 | 6, 8 | sseldd 3896 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑛) ∈ dom 𝑂) |
10 | | elssuni 4780 |
. . . . . . 7
⊢ ((𝐸‘𝑛) ∈ dom 𝑂 → (𝐸‘𝑛) ⊆ ∪ dom
𝑂) |
11 | 9, 10 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑛) ⊆ ∪ dom
𝑂) |
12 | 11, 2 | syl6sseqr 3945 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑛) ⊆ 𝑋) |
13 | 12 | ralrimiva 3151 |
. . . 4
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐸‘𝑛) ⊆ 𝑋) |
14 | | iunss 4874 |
. . . 4
⊢ (∪ 𝑛 ∈ ℕ (𝐸‘𝑛) ⊆ 𝑋 ↔ ∀𝑛 ∈ ℕ (𝐸‘𝑛) ⊆ 𝑋) |
15 | 13, 14 | sylibr 235 |
. . 3
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐸‘𝑛) ⊆ 𝑋) |
16 | 1, 2, 15 | omexrcl 42353 |
. 2
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛)) ∈
ℝ*) |
17 | | nnex 11498 |
. . . 4
⊢ ℕ
∈ V |
18 | 17 | a1i 11 |
. . 3
⊢ (𝜑 → ℕ ∈
V) |
19 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑂 ∈ OutMeas) |
20 | 19, 2, 12 | omecl 42349 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑂‘(𝐸‘𝑛)) ∈ (0[,]+∞)) |
21 | | eqid 2797 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛))) = (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛))) |
22 | 20, 21 | fmptd 6748 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛))):ℕ⟶(0[,]+∞)) |
23 | 18, 22 | sge0xrcl 42231 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛)))) ∈
ℝ*) |
24 | | nfv 1896 |
. . 3
⊢
Ⅎ𝑛𝜑 |
25 | | nfcv 2951 |
. . 3
⊢
Ⅎ𝑛𝐸 |
26 | | nnuz 12134 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
27 | 1, 2, 3 | caragensspw 42355 |
. . . 4
⊢ (𝜑 → 𝑆 ⊆ 𝒫 𝑋) |
28 | 7, 27 | fssd 6403 |
. . 3
⊢ (𝜑 → 𝐸:ℕ⟶𝒫 𝑋) |
29 | 24, 25, 1, 2, 26, 28 | omeiunle 42363 |
. 2
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛)) ≤
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛))))) |
30 | | elpwinss 40871 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝒫 ℕ ∩
Fin) → 𝑥 ⊆
ℕ) |
31 | 30 | resmptd 5796 |
. . . . . . 7
⊢ (𝑥 ∈ (𝒫 ℕ ∩
Fin) → ((𝑛 ∈
ℕ ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑥) = (𝑛 ∈ 𝑥 ↦ (𝑂‘(𝐸‘𝑛)))) |
32 | 31 | fveq2d 6549 |
. . . . . 6
⊢ (𝑥 ∈ (𝒫 ℕ ∩
Fin) → (Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑥)) =
(Σ^‘(𝑛 ∈ 𝑥 ↦ (𝑂‘(𝐸‘𝑛))))) |
33 | 32 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) →
(Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑥)) =
(Σ^‘(𝑛 ∈ 𝑥 ↦ (𝑂‘(𝐸‘𝑛))))) |
34 | | 1zzd 11867 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) →
1 ∈ ℤ) |
35 | 30 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) →
𝑥 ⊆
ℕ) |
36 | | elinel2 4100 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝒫 ℕ ∩
Fin) → 𝑥 ∈
Fin) |
37 | 36 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) →
𝑥 ∈
Fin) |
38 | 34, 26, 35, 37 | uzfissfz 41156 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) →
∃𝑘 ∈ ℕ
𝑥 ⊆ (1...𝑘)) |
39 | | vex 3443 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
40 | 39 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ⊆ (1...𝑘)) → 𝑥 ∈ V) |
41 | 1 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ 𝑥) → 𝑂 ∈ OutMeas) |
42 | 28 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ 𝑥) → 𝐸:ℕ⟶𝒫 𝑋) |
43 | | fz1ssnn 12792 |
. . . . . . . . . . . . . . . . . 18
⊢
(1...𝑘) ⊆
ℕ |
44 | | ssel2 3890 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ⊆ (1...𝑘) ∧ 𝑛 ∈ 𝑥) → 𝑛 ∈ (1...𝑘)) |
45 | 43, 44 | sseldi 3893 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ⊆ (1...𝑘) ∧ 𝑛 ∈ 𝑥) → 𝑛 ∈ ℕ) |
46 | 45 | adantll 710 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ 𝑥) → 𝑛 ∈ ℕ) |
47 | 42, 46 | ffvelrnd 6724 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ 𝑥) → (𝐸‘𝑛) ∈ 𝒫 𝑋) |
48 | | elpwi 4469 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸‘𝑛) ∈ 𝒫 𝑋 → (𝐸‘𝑛) ⊆ 𝑋) |
49 | 47, 48 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ 𝑥) → (𝐸‘𝑛) ⊆ 𝑋) |
50 | 41, 2, 49 | omecl 42349 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ 𝑥) → (𝑂‘(𝐸‘𝑛)) ∈ (0[,]+∞)) |
51 | | eqid 2797 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ 𝑥 ↦ (𝑂‘(𝐸‘𝑛))) = (𝑛 ∈ 𝑥 ↦ (𝑂‘(𝐸‘𝑛))) |
52 | 50, 51 | fmptd 6748 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ⊆ (1...𝑘)) → (𝑛 ∈ 𝑥 ↦ (𝑂‘(𝐸‘𝑛))):𝑥⟶(0[,]+∞)) |
53 | 40, 52 | sge0xrcl 42231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ (1...𝑘)) →
(Σ^‘(𝑛 ∈ 𝑥 ↦ (𝑂‘(𝐸‘𝑛)))) ∈
ℝ*) |
54 | 53 | 3adant2 1124 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) →
(Σ^‘(𝑛 ∈ 𝑥 ↦ (𝑂‘(𝐸‘𝑛)))) ∈
ℝ*) |
55 | | ovex 7055 |
. . . . . . . . . . . . 13
⊢
(1...𝑘) ∈
V |
56 | 55 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1...𝑘) ∈ V) |
57 | | elfznn 12790 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ) |
58 | 57, 20 | sylan2 592 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑘)) → (𝑂‘(𝐸‘𝑛)) ∈ (0[,]+∞)) |
59 | | eqid 2797 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸‘𝑛))) = (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸‘𝑛))) |
60 | 58, 59 | fmptd 6748 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸‘𝑛))):(1...𝑘)⟶(0[,]+∞)) |
61 | 56, 60 | sge0xrcl 42231 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸‘𝑛)))) ∈
ℝ*) |
62 | 61 | 3ad2ant1 1126 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) →
(Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸‘𝑛)))) ∈
ℝ*) |
63 | 16 | 3ad2ant1 1126 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛)) ∈
ℝ*) |
64 | 55 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (1...𝑘) ∈ V) |
65 | | simpl1 1184 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑) |
66 | 57 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ) |
67 | 65, 66, 20 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → (𝑂‘(𝐸‘𝑛)) ∈ (0[,]+∞)) |
68 | | simp3 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → 𝑥 ⊆ (1...𝑘)) |
69 | 64, 67, 68 | sge0lessmpt 42245 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) →
(Σ^‘(𝑛 ∈ 𝑥 ↦ (𝑂‘(𝐸‘𝑛)))) ≤
(Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸‘𝑛))))) |
70 | 1 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑂 ∈ OutMeas) |
71 | 7 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐸:ℕ⟶𝑆) |
72 | | caratheodorylem2.5 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Disj 𝑛 ∈ ℕ (𝐸‘𝑛)) |
73 | 72 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Disj 𝑛 ∈ ℕ (𝐸‘𝑛)) |
74 | | caratheodorylem2.g |
. . . . . . . . . . . . . . 15
⊢ 𝐺 = (𝑘 ∈ ℕ ↦ ∪ 𝑛 ∈ (1...𝑘)(𝐸‘𝑛)) |
75 | | nfiu1 4862 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛∪ 𝑛 ∈ (1...𝑘)(𝐸‘𝑛) |
76 | | nfcv 2951 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘∪ 𝑚 ∈ (1...𝑛)(𝐸‘𝑚) |
77 | | fveq2 6545 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑚 → (𝐸‘𝑛) = (𝐸‘𝑚)) |
78 | 77 | cbviunv 4872 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑛 ∈ (1...𝑘)(𝐸‘𝑛) = ∪ 𝑚 ∈ (1...𝑘)(𝐸‘𝑚) |
79 | 78 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → ∪
𝑛 ∈ (1...𝑘)(𝐸‘𝑛) = ∪ 𝑚 ∈ (1...𝑘)(𝐸‘𝑚)) |
80 | | oveq2 7031 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑛 → (1...𝑘) = (1...𝑛)) |
81 | 80 | iuneq1d 4857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → ∪
𝑚 ∈ (1...𝑘)(𝐸‘𝑚) = ∪ 𝑚 ∈ (1...𝑛)(𝐸‘𝑚)) |
82 | 79, 81 | eqtrd 2833 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → ∪
𝑛 ∈ (1...𝑘)(𝐸‘𝑛) = ∪ 𝑚 ∈ (1...𝑛)(𝐸‘𝑚)) |
83 | 75, 76, 82 | cbvmpt 5067 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ ↦ ∪ 𝑛 ∈ (1...𝑘)(𝐸‘𝑛)) = (𝑛 ∈ ℕ ↦ ∪ 𝑚 ∈ (1...𝑛)(𝐸‘𝑚)) |
84 | 74, 83 | eqtri 2821 |
. . . . . . . . . . . . . 14
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ∪ 𝑚 ∈ (1...𝑛)(𝐸‘𝑚)) |
85 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ) |
86 | 85, 26 | syl6eleq 2895 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
(ℤ≥‘1)) |
87 | 86 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
(ℤ≥‘1)) |
88 | 70, 3, 26, 71, 73, 84, 87 | caratheodorylem1 42372 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑂‘(𝐺‘𝑘)) =
(Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸‘𝑛))))) |
89 | 88 | eqcomd 2803 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸‘𝑛)))) = (𝑂‘(𝐺‘𝑘))) |
90 | 15 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ∪ 𝑛 ∈ ℕ (𝐸‘𝑛) ⊆ 𝑋) |
91 | | fvex 6558 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐸‘𝑛) ∈ V |
92 | 55, 91 | iunex 7532 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑛 ∈ (1...𝑘)(𝐸‘𝑛) ∈ V |
93 | 74 | fvmpt2 6652 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ ∪ 𝑛 ∈ (1...𝑘)(𝐸‘𝑛) ∈ V) → (𝐺‘𝑘) = ∪ 𝑛 ∈ (1...𝑘)(𝐸‘𝑛)) |
94 | 85, 92, 93 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) = ∪ 𝑛 ∈ (1...𝑘)(𝐸‘𝑛)) |
95 | 43 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ →
(1...𝑘) ⊆
ℕ) |
96 | | iunss1 4844 |
. . . . . . . . . . . . . . . 16
⊢
((1...𝑘) ⊆
ℕ → ∪ 𝑛 ∈ (1...𝑘)(𝐸‘𝑛) ⊆ ∪
𝑛 ∈ ℕ (𝐸‘𝑛)) |
97 | 95, 96 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → ∪ 𝑛 ∈ (1...𝑘)(𝐸‘𝑛) ⊆ ∪
𝑛 ∈ ℕ (𝐸‘𝑛)) |
98 | 94, 97 | eqsstrd 3932 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) ⊆ ∪
𝑛 ∈ ℕ (𝐸‘𝑛)) |
99 | 98 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ⊆ ∪
𝑛 ∈ ℕ (𝐸‘𝑛)) |
100 | 70, 2, 90, 99 | omessle 42344 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑂‘(𝐺‘𝑘)) ≤ (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛))) |
101 | 89, 100 | eqbrtrd 4990 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸‘𝑛)))) ≤ (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛))) |
102 | 101 | 3adant3 1125 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) →
(Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸‘𝑛)))) ≤ (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛))) |
103 | 54, 62, 63, 69, 102 | xrletrd 12409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) →
(Σ^‘(𝑛 ∈ 𝑥 ↦ (𝑂‘(𝐸‘𝑛)))) ≤ (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛))) |
104 | 103 | 3exp 1112 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ ℕ → (𝑥 ⊆ (1...𝑘) →
(Σ^‘(𝑛 ∈ 𝑥 ↦ (𝑂‘(𝐸‘𝑛)))) ≤ (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛))))) |
105 | 104 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) →
(𝑘 ∈ ℕ →
(𝑥 ⊆ (1...𝑘) →
(Σ^‘(𝑛 ∈ 𝑥 ↦ (𝑂‘(𝐸‘𝑛)))) ≤ (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛))))) |
106 | 105 | rexlimdv 3248 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) →
(∃𝑘 ∈ ℕ
𝑥 ⊆ (1...𝑘) →
(Σ^‘(𝑛 ∈ 𝑥 ↦ (𝑂‘(𝐸‘𝑛)))) ≤ (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛)))) |
107 | 38, 106 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) →
(Σ^‘(𝑛 ∈ 𝑥 ↦ (𝑂‘(𝐸‘𝑛)))) ≤ (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛))) |
108 | 33, 107 | eqbrtrd 4990 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) →
(Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑥)) ≤ (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛))) |
109 | 108 | ralrimiva 3151 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝒫 ℕ ∩
Fin)(Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑥)) ≤ (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛))) |
110 | 18, 22, 16 | sge0lefi 42244 |
. . 3
⊢ (𝜑 →
((Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛)))) ≤ (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛)) ↔ ∀𝑥 ∈ (𝒫 ℕ ∩
Fin)(Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑥)) ≤ (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛)))) |
111 | 109, 110 | mpbird 258 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛)))) ≤ (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛))) |
112 | 16, 23, 29, 111 | xrletrid 12402 |
1
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ ℕ (𝐸‘𝑛)) =
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛))))) |