Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caratheodorylem2 Structured version   Visualization version   GIF version

Theorem caratheodorylem2 46532
Description: Caratheodory's construction is sigma-additive. Main part of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caratheodorylem2.o (𝜑𝑂 ∈ OutMeas)
caratheodorylem2.x 𝑋 = dom 𝑂
caratheodorylem2.s 𝑆 = (CaraGen‘𝑂)
caratheodorylem2.e (𝜑𝐸:ℕ⟶𝑆)
caratheodorylem2.5 (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
caratheodorylem2.g 𝐺 = (𝑘 ∈ ℕ ↦ 𝑛 ∈ (1...𝑘)(𝐸𝑛))
Assertion
Ref Expression
caratheodorylem2 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))))
Distinct variable groups:   𝑘,𝐸,𝑛   𝑛,𝐺   𝑘,𝑂,𝑛   𝑛,𝑋   𝜑,𝑘,𝑛
Allowed substitution hints:   𝑆(𝑘,𝑛)   𝐺(𝑘)   𝑋(𝑘)

Proof of Theorem caratheodorylem2
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caratheodorylem2.o . . 3 (𝜑𝑂 ∈ OutMeas)
2 caratheodorylem2.x . . 3 𝑋 = dom 𝑂
3 caratheodorylem2.s . . . . . . . . . . 11 𝑆 = (CaraGen‘𝑂)
43caragenss 46509 . . . . . . . . . 10 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
51, 4syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ dom 𝑂)
65adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑆 ⊆ dom 𝑂)
7 caratheodorylem2.e . . . . . . . . 9 (𝜑𝐸:ℕ⟶𝑆)
87ffvelcdmda 7059 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ 𝑆)
96, 8sseldd 3950 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ dom 𝑂)
10 elssuni 4904 . . . . . . 7 ((𝐸𝑛) ∈ dom 𝑂 → (𝐸𝑛) ⊆ dom 𝑂)
119, 10syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ⊆ dom 𝑂)
1211, 2sseqtrrdi 3991 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ⊆ 𝑋)
1312ralrimiva 3126 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
14 iunss 5012 . . . 4 ( 𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋 ↔ ∀𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
1513, 14sylibr 234 . . 3 (𝜑 𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
161, 2, 15omexrcl 46512 . 2 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
17 nnex 12199 . . . 4 ℕ ∈ V
1817a1i 11 . . 3 (𝜑 → ℕ ∈ V)
191adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑂 ∈ OutMeas)
2019, 2, 12omecl 46508 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
21 eqid 2730 . . . 4 (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))
2220, 21fmptd 7089 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))):ℕ⟶(0[,]+∞))
2318, 22sge0xrcl 46390 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
24 nfv 1914 . . 3 𝑛𝜑
25 nfcv 2892 . . 3 𝑛𝐸
26 nnuz 12843 . . 3 ℕ = (ℤ‘1)
271, 2, 3caragensspw 46514 . . . 4 (𝜑𝑆 ⊆ 𝒫 𝑋)
287, 27fssd 6708 . . 3 (𝜑𝐸:ℕ⟶𝒫 𝑋)
2924, 25, 1, 2, 26, 28omeiunle 46522 . 2 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))))
30 elpwinss 45050 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → 𝑥 ⊆ ℕ)
3130resmptd 6014 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → ((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥) = (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛))))
3231fveq2d 6865 . . . . . 6 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → (Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) = (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))))
3332adantl 481 . . . . 5 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) = (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))))
34 1zzd 12571 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 1 ∈ ℤ)
3530adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ⊆ ℕ)
36 elinel2 4168 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → 𝑥 ∈ Fin)
3736adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ Fin)
3834, 26, 35, 37uzfissfz 45329 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → ∃𝑘 ∈ ℕ 𝑥 ⊆ (1...𝑘))
39 vex 3454 . . . . . . . . . . . . 13 𝑥 ∈ V
4039a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ (1...𝑘)) → 𝑥 ∈ V)
411ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → 𝑂 ∈ OutMeas)
4228ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → 𝐸:ℕ⟶𝒫 𝑋)
43 fz1ssnn 13523 . . . . . . . . . . . . . . . . . 18 (1...𝑘) ⊆ ℕ
44 ssel2 3944 . . . . . . . . . . . . . . . . . 18 ((𝑥 ⊆ (1...𝑘) ∧ 𝑛𝑥) → 𝑛 ∈ (1...𝑘))
4543, 44sselid 3947 . . . . . . . . . . . . . . . . 17 ((𝑥 ⊆ (1...𝑘) ∧ 𝑛𝑥) → 𝑛 ∈ ℕ)
4645adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → 𝑛 ∈ ℕ)
4742, 46ffvelcdmd 7060 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → (𝐸𝑛) ∈ 𝒫 𝑋)
48 elpwi 4573 . . . . . . . . . . . . . . 15 ((𝐸𝑛) ∈ 𝒫 𝑋 → (𝐸𝑛) ⊆ 𝑋)
4947, 48syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → (𝐸𝑛) ⊆ 𝑋)
5041, 2, 49omecl 46508 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
51 eqid 2730 . . . . . . . . . . . . 13 (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))
5250, 51fmptd 7089 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ (1...𝑘)) → (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛))):𝑥⟶(0[,]+∞))
5340, 52sge0xrcl 46390 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
54533adant2 1131 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
55 ovex 7423 . . . . . . . . . . . . 13 (1...𝑘) ∈ V
5655a1i 11 . . . . . . . . . . . 12 (𝜑 → (1...𝑘) ∈ V)
57 elfznn 13521 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
5857, 20sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑘)) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
59 eqid 2730 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))
6058, 59fmptd 7089 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛))):(1...𝑘)⟶(0[,]+∞))
6156, 60sge0xrcl 46390 . . . . . . . . . . 11 (𝜑 → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
62613ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
63163ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
6455a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (1...𝑘) ∈ V)
65 simpl1 1192 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑)
6657adantl 481 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
6765, 66, 20syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
68 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → 𝑥 ⊆ (1...𝑘))
6964, 67, 68sge0lessmpt 46404 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))))
701adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑂 ∈ OutMeas)
717adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐸:ℕ⟶𝑆)
72 caratheodorylem2.5 . . . . . . . . . . . . . . 15 (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
7372adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → Disj 𝑛 ∈ ℕ (𝐸𝑛))
74 caratheodorylem2.g . . . . . . . . . . . . . . 15 𝐺 = (𝑘 ∈ ℕ ↦ 𝑛 ∈ (1...𝑘)(𝐸𝑛))
75 nfiu1 4994 . . . . . . . . . . . . . . . 16 𝑛 𝑛 ∈ (1...𝑘)(𝐸𝑛)
76 nfcv 2892 . . . . . . . . . . . . . . . 16 𝑘 𝑚 ∈ (1...𝑛)(𝐸𝑚)
77 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
7877cbviunv 5007 . . . . . . . . . . . . . . . . . 18 𝑛 ∈ (1...𝑘)(𝐸𝑛) = 𝑚 ∈ (1...𝑘)(𝐸𝑚)
7978a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 𝑛 ∈ (1...𝑘)(𝐸𝑛) = 𝑚 ∈ (1...𝑘)(𝐸𝑚))
80 oveq2 7398 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (1...𝑘) = (1...𝑛))
8180iuneq1d 4986 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 𝑚 ∈ (1...𝑘)(𝐸𝑚) = 𝑚 ∈ (1...𝑛)(𝐸𝑚))
8279, 81eqtrd 2765 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 𝑛 ∈ (1...𝑘)(𝐸𝑛) = 𝑚 ∈ (1...𝑛)(𝐸𝑚))
8375, 76, 82cbvmpt 5212 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ ↦ 𝑛 ∈ (1...𝑘)(𝐸𝑛)) = (𝑛 ∈ ℕ ↦ 𝑚 ∈ (1...𝑛)(𝐸𝑚))
8474, 83eqtri 2753 . . . . . . . . . . . . . 14 𝐺 = (𝑛 ∈ ℕ ↦ 𝑚 ∈ (1...𝑛)(𝐸𝑚))
85 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
8685, 26eleqtrdi 2839 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ (ℤ‘1))
8786adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
8870, 3, 26, 71, 73, 84, 87caratheodorylem1 46531 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑂‘(𝐺𝑘)) = (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))))
8988eqcomd 2736 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) = (𝑂‘(𝐺𝑘)))
9015adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
91 fvex 6874 . . . . . . . . . . . . . . . . 17 (𝐸𝑛) ∈ V
9255, 91iunex 7950 . . . . . . . . . . . . . . . 16 𝑛 ∈ (1...𝑘)(𝐸𝑛) ∈ V
9374fvmpt2 6982 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑘)(𝐸𝑛) ∈ V) → (𝐺𝑘) = 𝑛 ∈ (1...𝑘)(𝐸𝑛))
9485, 92, 93sylancl 586 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝐺𝑘) = 𝑛 ∈ (1...𝑘)(𝐸𝑛))
9543a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (1...𝑘) ⊆ ℕ)
96 iunss1 4973 . . . . . . . . . . . . . . . 16 ((1...𝑘) ⊆ ℕ → 𝑛 ∈ (1...𝑘)(𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
9795, 96syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑛 ∈ (1...𝑘)(𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
9894, 97eqsstrd 3984 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐺𝑘) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
9998adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
10070, 2, 90, 99omessle 46503 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑂‘(𝐺𝑘)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
10189, 100eqbrtrd 5132 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
1021013adant3 1132 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
10354, 62, 63, 69, 102xrletrd 13129 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
1041033exp 1119 . . . . . . . 8 (𝜑 → (𝑘 ∈ ℕ → (𝑥 ⊆ (1...𝑘) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))))
105104adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (𝑘 ∈ ℕ → (𝑥 ⊆ (1...𝑘) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))))
106105rexlimdv 3133 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (∃𝑘 ∈ ℕ 𝑥 ⊆ (1...𝑘) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛))))
10738, 106mpd 15 . . . . 5 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
10833, 107eqbrtrd 5132 . . . 4 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
109108ralrimiva 3126 . . 3 (𝜑 → ∀𝑥 ∈ (𝒫 ℕ ∩ Fin)(Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
11018, 22, 16sge0lefi 46403 . . 3 (𝜑 → ((Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ↔ ∀𝑥 ∈ (𝒫 ℕ ∩ Fin)(Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛))))
111109, 110mpbird 257 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
11216, 23, 29, 111xrletrid 13122 1 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874   ciun 4958  Disj wdisj 5077   class class class wbr 5110  cmpt 5191  dom cdm 5641  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  0cc0 11075  1c1 11076  +∞cpnf 11212  *cxr 11214  cle 11216  cn 12193  cuz 12800  [,]cicc 13316  ...cfz 13475  Σ^csumge0 46367  OutMeascome 46494  CaraGenccaragen 46496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-sumge0 46368  df-ome 46495  df-caragen 46497
This theorem is referenced by:  caratheodory  46533
  Copyright terms: Public domain W3C validator