MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqreznegel Structured version   Visualization version   GIF version

Theorem eqreznegel 12946
Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
eqreznegel (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} = {𝑧 ∈ ℤ ∣ -𝑧𝐴})
Distinct variable group:   𝑧,𝐴

Proof of Theorem eqreznegel
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssel 3966 . . . . . . 7 (𝐴 ⊆ ℤ → (-𝑤𝐴 → -𝑤 ∈ ℤ))
2 recn 11226 . . . . . . . 8 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
3 negid 11535 . . . . . . . . . . 11 (𝑤 ∈ ℂ → (𝑤 + -𝑤) = 0)
4 0z 12597 . . . . . . . . . . 11 0 ∈ ℤ
53, 4eqeltrdi 2833 . . . . . . . . . 10 (𝑤 ∈ ℂ → (𝑤 + -𝑤) ∈ ℤ)
65pm4.71i 558 . . . . . . . . 9 (𝑤 ∈ ℂ ↔ (𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ))
7 zrevaddcl 12635 . . . . . . . . 9 (-𝑤 ∈ ℤ → ((𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ) ↔ 𝑤 ∈ ℤ))
86, 7bitrid 282 . . . . . . . 8 (-𝑤 ∈ ℤ → (𝑤 ∈ ℂ ↔ 𝑤 ∈ ℤ))
92, 8imbitrid 243 . . . . . . 7 (-𝑤 ∈ ℤ → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ))
101, 9syl6 35 . . . . . 6 (𝐴 ⊆ ℤ → (-𝑤𝐴 → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ)))
1110impcomd 410 . . . . 5 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → 𝑤 ∈ ℤ))
12 simpr 483 . . . . 5 ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → -𝑤𝐴)
1311, 12jca2 512 . . . 4 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → (𝑤 ∈ ℤ ∧ -𝑤𝐴)))
14 zre 12590 . . . . 5 (𝑤 ∈ ℤ → 𝑤 ∈ ℝ)
1514anim1i 613 . . . 4 ((𝑤 ∈ ℤ ∧ -𝑤𝐴) → (𝑤 ∈ ℝ ∧ -𝑤𝐴))
1613, 15impbid1 224 . . 3 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) ↔ (𝑤 ∈ ℤ ∧ -𝑤𝐴)))
17 negeq 11480 . . . . 5 (𝑧 = 𝑤 → -𝑧 = -𝑤)
1817eleq1d 2810 . . . 4 (𝑧 = 𝑤 → (-𝑧𝐴 ↔ -𝑤𝐴))
1918elrab 3675 . . 3 (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ (𝑤 ∈ ℝ ∧ -𝑤𝐴))
2018elrab 3675 . . 3 (𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧𝐴} ↔ (𝑤 ∈ ℤ ∧ -𝑤𝐴))
2116, 19, 203bitr4g 313 . 2 (𝐴 ⊆ ℤ → (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ 𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧𝐴}))
2221eqrdv 2723 1 (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} = {𝑧 ∈ ℤ ∣ -𝑧𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {crab 3419  wss 3940  (class class class)co 7415  cc 11134  cr 11135  0cc0 11136   + caddc 11139  -cneg 11473  cz 12586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-n0 12501  df-z 12587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator