MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqreznegel Structured version   Visualization version   GIF version

Theorem eqreznegel 12832
Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
eqreznegel (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} = {𝑧 ∈ ℤ ∣ -𝑧𝐴})
Distinct variable group:   𝑧,𝐴

Proof of Theorem eqreznegel
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssel 3923 . . . . . . 7 (𝐴 ⊆ ℤ → (-𝑤𝐴 → -𝑤 ∈ ℤ))
2 recn 11096 . . . . . . . 8 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
3 negid 11408 . . . . . . . . . . 11 (𝑤 ∈ ℂ → (𝑤 + -𝑤) = 0)
4 0z 12479 . . . . . . . . . . 11 0 ∈ ℤ
53, 4eqeltrdi 2839 . . . . . . . . . 10 (𝑤 ∈ ℂ → (𝑤 + -𝑤) ∈ ℤ)
65pm4.71i 559 . . . . . . . . 9 (𝑤 ∈ ℂ ↔ (𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ))
7 zrevaddcl 12517 . . . . . . . . 9 (-𝑤 ∈ ℤ → ((𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ) ↔ 𝑤 ∈ ℤ))
86, 7bitrid 283 . . . . . . . 8 (-𝑤 ∈ ℤ → (𝑤 ∈ ℂ ↔ 𝑤 ∈ ℤ))
92, 8imbitrid 244 . . . . . . 7 (-𝑤 ∈ ℤ → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ))
101, 9syl6 35 . . . . . 6 (𝐴 ⊆ ℤ → (-𝑤𝐴 → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ)))
1110impcomd 411 . . . . 5 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → 𝑤 ∈ ℤ))
12 simpr 484 . . . . 5 ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → -𝑤𝐴)
1311, 12jca2 513 . . . 4 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → (𝑤 ∈ ℤ ∧ -𝑤𝐴)))
14 zre 12472 . . . . 5 (𝑤 ∈ ℤ → 𝑤 ∈ ℝ)
1514anim1i 615 . . . 4 ((𝑤 ∈ ℤ ∧ -𝑤𝐴) → (𝑤 ∈ ℝ ∧ -𝑤𝐴))
1613, 15impbid1 225 . . 3 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) ↔ (𝑤 ∈ ℤ ∧ -𝑤𝐴)))
17 negeq 11352 . . . . 5 (𝑧 = 𝑤 → -𝑧 = -𝑤)
1817eleq1d 2816 . . . 4 (𝑧 = 𝑤 → (-𝑧𝐴 ↔ -𝑤𝐴))
1918elrab 3642 . . 3 (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ (𝑤 ∈ ℝ ∧ -𝑤𝐴))
2018elrab 3642 . . 3 (𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧𝐴} ↔ (𝑤 ∈ ℤ ∧ -𝑤𝐴))
2116, 19, 203bitr4g 314 . 2 (𝐴 ⊆ ℤ → (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ 𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧𝐴}))
2221eqrdv 2729 1 (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} = {𝑧 ∈ ℤ ∣ -𝑧𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  wss 3897  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006   + caddc 11009  -cneg 11345  cz 12468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator