Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqreznegel | Structured version Visualization version GIF version |
Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
eqreznegel | ⊢ (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3924 | . . . . . . 7 ⊢ (𝐴 ⊆ ℤ → (-𝑤 ∈ 𝐴 → -𝑤 ∈ ℤ)) | |
2 | recn 11041 | . . . . . . . 8 ⊢ (𝑤 ∈ ℝ → 𝑤 ∈ ℂ) | |
3 | negid 11348 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ ℂ → (𝑤 + -𝑤) = 0) | |
4 | 0z 12410 | . . . . . . . . . . 11 ⊢ 0 ∈ ℤ | |
5 | 3, 4 | eqeltrdi 2846 | . . . . . . . . . 10 ⊢ (𝑤 ∈ ℂ → (𝑤 + -𝑤) ∈ ℤ) |
6 | 5 | pm4.71i 560 | . . . . . . . . 9 ⊢ (𝑤 ∈ ℂ ↔ (𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ)) |
7 | zrevaddcl 12445 | . . . . . . . . 9 ⊢ (-𝑤 ∈ ℤ → ((𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ) ↔ 𝑤 ∈ ℤ)) | |
8 | 6, 7 | bitrid 282 | . . . . . . . 8 ⊢ (-𝑤 ∈ ℤ → (𝑤 ∈ ℂ ↔ 𝑤 ∈ ℤ)) |
9 | 2, 8 | syl5ib 243 | . . . . . . 7 ⊢ (-𝑤 ∈ ℤ → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ)) |
10 | 1, 9 | syl6 35 | . . . . . 6 ⊢ (𝐴 ⊆ ℤ → (-𝑤 ∈ 𝐴 → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ))) |
11 | 10 | impcomd 412 | . . . . 5 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → 𝑤 ∈ ℤ)) |
12 | simpr 485 | . . . . 5 ⊢ ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → -𝑤 ∈ 𝐴) | |
13 | 11, 12 | jca2 514 | . . . 4 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴))) |
14 | zre 12403 | . . . . 5 ⊢ (𝑤 ∈ ℤ → 𝑤 ∈ ℝ) | |
15 | 14 | anim1i 615 | . . . 4 ⊢ ((𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴)) |
16 | 13, 15 | impbid1 224 | . . 3 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) ↔ (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴))) |
17 | negeq 11293 | . . . . 5 ⊢ (𝑧 = 𝑤 → -𝑧 = -𝑤) | |
18 | 17 | eleq1d 2822 | . . . 4 ⊢ (𝑧 = 𝑤 → (-𝑧 ∈ 𝐴 ↔ -𝑤 ∈ 𝐴)) |
19 | 18 | elrab 3634 | . . 3 ⊢ (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ (𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴)) |
20 | 18 | elrab 3634 | . . 3 ⊢ (𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴} ↔ (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴)) |
21 | 16, 19, 20 | 3bitr4g 313 | . 2 ⊢ (𝐴 ⊆ ℤ → (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ 𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴})) |
22 | 21 | eqrdv 2735 | 1 ⊢ (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {crab 3404 ⊆ wss 3897 (class class class)co 7317 ℂcc 10949 ℝcr 10950 0cc0 10951 + caddc 10954 -cneg 11286 ℤcz 12399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-n0 12314 df-z 12400 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |