MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserodd Structured version   Visualization version   GIF version

Theorem iserodd 16749
Description: Collect the odd terms in a sequence. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
iserodd.f ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
iserodd.h (𝑛 = ((2 · 𝑘) + 1) → 𝐵 = 𝐶)
Assertion
Ref Expression
iserodd (𝜑 → (seq0( + , (𝑘 ∈ ℕ0𝐶)) ⇝ 𝐴 ↔ seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))) ⇝ 𝐴))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑛   𝑘,𝑛,𝜑
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑛)   𝐶(𝑘)

Proof of Theorem iserodd
Dummy variables 𝑖 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12776 . 2 0 = (ℤ‘0)
2 nnuz 12777 . 2 ℕ = (ℤ‘1)
3 0zd 12487 . 2 (𝜑 → 0 ∈ ℤ)
4 1zzd 12509 . 2 (𝜑 → 1 ∈ ℤ)
5 2nn0 12405 . . . . . 6 2 ∈ ℕ0
65a1i 11 . . . . 5 (𝜑 → 2 ∈ ℕ0)
7 nn0mulcl 12424 . . . . 5 ((2 ∈ ℕ0𝑚 ∈ ℕ0) → (2 · 𝑚) ∈ ℕ0)
86, 7sylan 580 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (2 · 𝑚) ∈ ℕ0)
9 nn0p1nn 12427 . . . 4 ((2 · 𝑚) ∈ ℕ0 → ((2 · 𝑚) + 1) ∈ ℕ)
108, 9syl 17 . . 3 ((𝜑𝑚 ∈ ℕ0) → ((2 · 𝑚) + 1) ∈ ℕ)
1110fmpttd 7054 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)):ℕ0⟶ℕ)
12 nn0mulcl 12424 . . . . . 6 ((2 ∈ ℕ0𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℕ0)
136, 12sylan 580 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℕ0)
1413nn0red 12450 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℝ)
15 peano2nn0 12428 . . . . . 6 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
16 nn0mulcl 12424 . . . . . 6 ((2 ∈ ℕ0 ∧ (𝑖 + 1) ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℕ0)
176, 15, 16syl2an 596 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℕ0)
1817nn0red 12450 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℝ)
19 1red 11120 . . . 4 ((𝜑𝑖 ∈ ℕ0) → 1 ∈ ℝ)
20 nn0re 12397 . . . . . . 7 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
2120adantl 481 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
2221ltp1d 12059 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝑖 < (𝑖 + 1))
23 1red 11120 . . . . . . . 8 (𝑖 ∈ ℕ0 → 1 ∈ ℝ)
2420, 23readdcld 11148 . . . . . . 7 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℝ)
25 2rp 12897 . . . . . . . 8 2 ∈ ℝ+
2625a1i 11 . . . . . . 7 (𝑖 ∈ ℕ0 → 2 ∈ ℝ+)
2720, 24, 26ltmul2d 12978 . . . . . 6 (𝑖 ∈ ℕ0 → (𝑖 < (𝑖 + 1) ↔ (2 · 𝑖) < (2 · (𝑖 + 1))))
2827adantl 481 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑖 < (𝑖 + 1) ↔ (2 · 𝑖) < (2 · (𝑖 + 1))))
2922, 28mpbid 232 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) < (2 · (𝑖 + 1)))
3014, 18, 19, 29ltadd1dd 11735 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((2 · 𝑖) + 1) < ((2 · (𝑖 + 1)) + 1))
31 oveq2 7360 . . . . . 6 (𝑚 = 𝑖 → (2 · 𝑚) = (2 · 𝑖))
3231oveq1d 7367 . . . . 5 (𝑚 = 𝑖 → ((2 · 𝑚) + 1) = ((2 · 𝑖) + 1))
33 eqid 2733 . . . . 5 (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) = (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))
34 ovex 7385 . . . . 5 ((2 · 𝑖) + 1) ∈ V
3532, 33, 34fvmpt 6935 . . . 4 (𝑖 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) = ((2 · 𝑖) + 1))
3635adantl 481 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) = ((2 · 𝑖) + 1))
3715adantl 481 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℕ0)
38 oveq2 7360 . . . . . 6 (𝑚 = (𝑖 + 1) → (2 · 𝑚) = (2 · (𝑖 + 1)))
3938oveq1d 7367 . . . . 5 (𝑚 = (𝑖 + 1) → ((2 · 𝑚) + 1) = ((2 · (𝑖 + 1)) + 1))
40 ovex 7385 . . . . 5 ((2 · (𝑖 + 1)) + 1) ∈ V
4139, 33, 40fvmpt 6935 . . . 4 ((𝑖 + 1) ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)) = ((2 · (𝑖 + 1)) + 1))
4237, 41syl 17 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)) = ((2 · (𝑖 + 1)) + 1))
4330, 36, 423brtr4d 5125 . 2 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) < ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)))
44 eldifi 4080 . . . . . . 7 (𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))) → 𝑛 ∈ ℕ)
45 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
46 0cnd 11112 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 0 ∈ ℂ)
47 nnz 12496 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
4847adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
49 odd2np1 16254 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (¬ 2 ∥ 𝑛 ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛))
5048, 49syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛))
51 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℤ)
52 nnm1nn0 12429 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5352ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) ∈ ℕ0)
5453nn0red 12450 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) ∈ ℝ)
5525a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ∈ ℝ+)
5653nn0ge0d 12452 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ (𝑛 − 1))
5754, 55, 56divge0d 12976 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ ((𝑛 − 1) / 2))
58 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((2 · 𝑘) + 1) = 𝑛)
5958oveq1d 7367 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (((2 · 𝑘) + 1) − 1) = (𝑛 − 1))
60 2cn 12207 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
61 zcn 12480 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
6261ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℂ)
63 mulcl 11097 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
6460, 62, 63sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (2 · 𝑘) ∈ ℂ)
65 ax-1cn 11071 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
66 pncan 11373 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
6764, 65, 66sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
6859, 67eqtr3d 2770 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) = (2 · 𝑘))
6968oveq1d 7367 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((𝑛 − 1) / 2) = ((2 · 𝑘) / 2))
70 2cnd 12210 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ∈ ℂ)
71 2ne0 12236 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
7271a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ≠ 0)
7362, 70, 72divcan3d 11909 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((2 · 𝑘) / 2) = 𝑘)
7469, 73eqtrd 2768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((𝑛 − 1) / 2) = 𝑘)
7557, 74breqtrd 5119 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ 𝑘)
76 elnn0z 12488 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
7751, 75, 76sylanbrc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℕ0)
7877ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → 𝑘 ∈ ℕ0))
79 simpr 484 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → ((2 · 𝑘) + 1) = 𝑛)
8079eqcomd 2739 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → 𝑛 = ((2 · 𝑘) + 1))
8178, 80jca2 513 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → (𝑘 ∈ ℕ0𝑛 = ((2 · 𝑘) + 1))))
8281reximdv2 3143 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛 → ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
8350, 82sylbid 240 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 → ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
84 iserodd.f . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
85 iserodd.h . . . . . . . . . . . . . . 15 (𝑛 = ((2 · 𝑘) + 1) → 𝐵 = 𝐶)
8685eleq1d 2818 . . . . . . . . . . . . . 14 (𝑛 = ((2 · 𝑘) + 1) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
8784, 86syl5ibrcom 247 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
8887rexlimdva 3134 . . . . . . . . . . . 12 (𝜑 → (∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
8988adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
9083, 89syld 47 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛𝐵 ∈ ℂ))
9190imp 406 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝐵 ∈ ℂ)
9246, 91ifclda 4510 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → if(2 ∥ 𝑛, 0, 𝐵) ∈ ℂ)
93 eqid 2733 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵)) = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))
9493fvmpt2 6946 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ if(2 ∥ 𝑛, 0, 𝐵) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
9545, 92, 94syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
9644, 95sylan2 593 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
97 eldif 3908 . . . . . . . 8 (𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))) ↔ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))))
98 oveq2 7360 . . . . . . . . . . . . . . 15 (𝑚 = 𝑘 → (2 · 𝑚) = (2 · 𝑘))
9998oveq1d 7367 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → ((2 · 𝑚) + 1) = ((2 · 𝑘) + 1))
10099cbvmptv 5197 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) = (𝑘 ∈ ℕ0 ↦ ((2 · 𝑘) + 1))
101100elrnmpt 5902 . . . . . . . . . . . 12 (𝑛 ∈ V → (𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) ↔ ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
102101elv 3442 . . . . . . . . . . 11 (𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) ↔ ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1))
10383, 102imbitrrdi 252 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))))
104103con1d 145 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) → 2 ∥ 𝑛))
105104impr 454 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → 2 ∥ 𝑛)
10697, 105sylan2b 594 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → 2 ∥ 𝑛)
107106iftrued 4482 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → if(2 ∥ 𝑛, 0, 𝐵) = 0)
10896, 107eqtrd 2768 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0)
109108ralrimiva 3125 . . . 4 (𝜑 → ∀𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0)
110 nfv 1915 . . . . 5 𝑗((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0
111 nffvmpt1 6839 . . . . . 6 𝑛((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗)
112111nfeq1 2911 . . . . 5 𝑛((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0
113 fveqeq2 6837 . . . . 5 (𝑛 = 𝑗 → (((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0 ↔ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0))
114110, 112, 113cbvralw 3275 . . . 4 (∀𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0 ↔ ∀𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
115109, 114sylib 218 . . 3 (𝜑 → ∀𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
116115r19.21bi 3225 . 2 ((𝜑𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
11792fmpttd 7054 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵)):ℕ⟶ℂ)
118117ffvelcdmda 7023 . 2 ((𝜑𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) ∈ ℂ)
119 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
120 eqid 2733 . . . . . . . 8 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
121120fvmpt2 6946 . . . . . . 7 ((𝑘 ∈ ℕ0𝐶 ∈ ℂ) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = 𝐶)
122119, 84, 121syl2anc 584 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = 𝐶)
123 ovex 7385 . . . . . . . . . 10 ((2 · 𝑘) + 1) ∈ V
12499, 33, 123fvmpt 6935 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘) = ((2 · 𝑘) + 1))
125124adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘) = ((2 · 𝑘) + 1))
126125fveq2d 6832 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((2 · 𝑘) + 1)))
127 breq2 5097 . . . . . . . . 9 (𝑛 = ((2 · 𝑘) + 1) → (2 ∥ 𝑛 ↔ 2 ∥ ((2 · 𝑘) + 1)))
128127, 85ifbieq2d 4501 . . . . . . . 8 (𝑛 = ((2 · 𝑘) + 1) → if(2 ∥ 𝑛, 0, 𝐵) = if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶))
129 nn0mulcl 12424 . . . . . . . . . 10 ((2 ∈ ℕ0𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
1306, 129sylan 580 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
131 nn0p1nn 12427 . . . . . . . . 9 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
132130, 131syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ)
133 2z 12510 . . . . . . . . . . . 12 2 ∈ ℤ
134 nn0z 12499 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
135134adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
136 dvdsmul1 16190 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ (2 · 𝑘))
137133, 135, 136sylancr 587 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 2 ∥ (2 · 𝑘))
138130nn0zd 12500 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℤ)
139 2nn 12205 . . . . . . . . . . . . 13 2 ∈ ℕ
140139a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℕ)
141 1lt2 12298 . . . . . . . . . . . . 13 1 < 2
142141a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 1 < 2)
143 ndvdsp1 16324 . . . . . . . . . . . 12 (((2 · 𝑘) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ (2 · 𝑘) → ¬ 2 ∥ ((2 · 𝑘) + 1)))
144138, 140, 142, 143syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (2 ∥ (2 · 𝑘) → ¬ 2 ∥ ((2 · 𝑘) + 1)))
145137, 144mpd 15 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ¬ 2 ∥ ((2 · 𝑘) + 1))
146145iffalsed 4485 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶) = 𝐶)
147146, 84eqeltrd 2833 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶) ∈ ℂ)
14893, 128, 132, 147fvmptd3 6958 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((2 · 𝑘) + 1)) = if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶))
149126, 148, 1463eqtrd 2772 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = 𝐶)
150122, 149eqtr4d 2771 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)))
151150ralrimiva 3125 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)))
152 nfv 1915 . . . . 5 𝑖((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘))
153 nffvmpt1 6839 . . . . . 6 𝑘((𝑘 ∈ ℕ0𝐶)‘𝑖)
154153nfeq1 2911 . . . . 5 𝑘((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖))
155 fveq2 6828 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑘 ∈ ℕ0𝐶)‘𝑖))
156 2fveq3 6833 . . . . . 6 (𝑘 = 𝑖 → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
157155, 156eqeq12d 2749 . . . . 5 (𝑘 = 𝑖 → (((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) ↔ ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖))))
158152, 154, 157cbvralw 3275 . . . 4 (∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) ↔ ∀𝑖 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
159151, 158sylib 218 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
160159r19.21bi 3225 . 2 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
1611, 2, 3, 4, 11, 43, 116, 118, 160isercoll2 15578 1 (𝜑 → (seq0( + , (𝑘 ∈ ℕ0𝐶)) ⇝ 𝐴 ↔ seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))) ⇝ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  cdif 3895  ifcif 4474   class class class wbr 5093  cmpt 5174  ran crn 5620  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   < clt 11153  cle 11154  cmin 11351   / cdiv 11781  cn 12132  2c2 12187  0cn0 12388  cz 12475  +crp 12892  seqcseq 13910  cli 15393  cdvds 16165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-seq 13911  df-exp 13971  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-dvds 16166
This theorem is referenced by:  atantayl3  26877  leibpilem2  26879
  Copyright terms: Public domain W3C validator