MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserodd Structured version   Visualization version   GIF version

Theorem iserodd 16882
Description: Collect the odd terms in a sequence. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
iserodd.f ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
iserodd.h (𝑛 = ((2 · 𝑘) + 1) → 𝐵 = 𝐶)
Assertion
Ref Expression
iserodd (𝜑 → (seq0( + , (𝑘 ∈ ℕ0𝐶)) ⇝ 𝐴 ↔ seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))) ⇝ 𝐴))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑛   𝑘,𝑛,𝜑
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑛)   𝐶(𝑘)

Proof of Theorem iserodd
Dummy variables 𝑖 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12945 . 2 0 = (ℤ‘0)
2 nnuz 12946 . 2 ℕ = (ℤ‘1)
3 0zd 12651 . 2 (𝜑 → 0 ∈ ℤ)
4 1zzd 12674 . 2 (𝜑 → 1 ∈ ℤ)
5 2nn0 12570 . . . . . 6 2 ∈ ℕ0
65a1i 11 . . . . 5 (𝜑 → 2 ∈ ℕ0)
7 nn0mulcl 12589 . . . . 5 ((2 ∈ ℕ0𝑚 ∈ ℕ0) → (2 · 𝑚) ∈ ℕ0)
86, 7sylan 579 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (2 · 𝑚) ∈ ℕ0)
9 nn0p1nn 12592 . . . 4 ((2 · 𝑚) ∈ ℕ0 → ((2 · 𝑚) + 1) ∈ ℕ)
108, 9syl 17 . . 3 ((𝜑𝑚 ∈ ℕ0) → ((2 · 𝑚) + 1) ∈ ℕ)
1110fmpttd 7149 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)):ℕ0⟶ℕ)
12 nn0mulcl 12589 . . . . . 6 ((2 ∈ ℕ0𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℕ0)
136, 12sylan 579 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℕ0)
1413nn0red 12614 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℝ)
15 peano2nn0 12593 . . . . . 6 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
16 nn0mulcl 12589 . . . . . 6 ((2 ∈ ℕ0 ∧ (𝑖 + 1) ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℕ0)
176, 15, 16syl2an 595 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℕ0)
1817nn0red 12614 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℝ)
19 1red 11291 . . . 4 ((𝜑𝑖 ∈ ℕ0) → 1 ∈ ℝ)
20 nn0re 12562 . . . . . . 7 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
2120adantl 481 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
2221ltp1d 12225 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝑖 < (𝑖 + 1))
23 1red 11291 . . . . . . . 8 (𝑖 ∈ ℕ0 → 1 ∈ ℝ)
2420, 23readdcld 11319 . . . . . . 7 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℝ)
25 2rp 13062 . . . . . . . 8 2 ∈ ℝ+
2625a1i 11 . . . . . . 7 (𝑖 ∈ ℕ0 → 2 ∈ ℝ+)
2720, 24, 26ltmul2d 13141 . . . . . 6 (𝑖 ∈ ℕ0 → (𝑖 < (𝑖 + 1) ↔ (2 · 𝑖) < (2 · (𝑖 + 1))))
2827adantl 481 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑖 < (𝑖 + 1) ↔ (2 · 𝑖) < (2 · (𝑖 + 1))))
2922, 28mpbid 232 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) < (2 · (𝑖 + 1)))
3014, 18, 19, 29ltadd1dd 11901 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((2 · 𝑖) + 1) < ((2 · (𝑖 + 1)) + 1))
31 oveq2 7456 . . . . . 6 (𝑚 = 𝑖 → (2 · 𝑚) = (2 · 𝑖))
3231oveq1d 7463 . . . . 5 (𝑚 = 𝑖 → ((2 · 𝑚) + 1) = ((2 · 𝑖) + 1))
33 eqid 2740 . . . . 5 (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) = (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))
34 ovex 7481 . . . . 5 ((2 · 𝑖) + 1) ∈ V
3532, 33, 34fvmpt 7029 . . . 4 (𝑖 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) = ((2 · 𝑖) + 1))
3635adantl 481 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) = ((2 · 𝑖) + 1))
3715adantl 481 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℕ0)
38 oveq2 7456 . . . . . 6 (𝑚 = (𝑖 + 1) → (2 · 𝑚) = (2 · (𝑖 + 1)))
3938oveq1d 7463 . . . . 5 (𝑚 = (𝑖 + 1) → ((2 · 𝑚) + 1) = ((2 · (𝑖 + 1)) + 1))
40 ovex 7481 . . . . 5 ((2 · (𝑖 + 1)) + 1) ∈ V
4139, 33, 40fvmpt 7029 . . . 4 ((𝑖 + 1) ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)) = ((2 · (𝑖 + 1)) + 1))
4237, 41syl 17 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)) = ((2 · (𝑖 + 1)) + 1))
4330, 36, 423brtr4d 5198 . 2 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) < ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)))
44 eldifi 4154 . . . . . . 7 (𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))) → 𝑛 ∈ ℕ)
45 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
46 0cnd 11283 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 0 ∈ ℂ)
47 nnz 12660 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
4847adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
49 odd2np1 16389 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (¬ 2 ∥ 𝑛 ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛))
5048, 49syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛))
51 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℤ)
52 nnm1nn0 12594 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5352ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) ∈ ℕ0)
5453nn0red 12614 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) ∈ ℝ)
5525a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ∈ ℝ+)
5653nn0ge0d 12616 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ (𝑛 − 1))
5754, 55, 56divge0d 13139 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ ((𝑛 − 1) / 2))
58 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((2 · 𝑘) + 1) = 𝑛)
5958oveq1d 7463 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (((2 · 𝑘) + 1) − 1) = (𝑛 − 1))
60 2cn 12368 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
61 zcn 12644 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
6261ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℂ)
63 mulcl 11268 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
6460, 62, 63sylancr 586 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (2 · 𝑘) ∈ ℂ)
65 ax-1cn 11242 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
66 pncan 11542 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
6764, 65, 66sylancl 585 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
6859, 67eqtr3d 2782 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) = (2 · 𝑘))
6968oveq1d 7463 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((𝑛 − 1) / 2) = ((2 · 𝑘) / 2))
70 2cnd 12371 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ∈ ℂ)
71 2ne0 12397 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
7271a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ≠ 0)
7362, 70, 72divcan3d 12075 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((2 · 𝑘) / 2) = 𝑘)
7469, 73eqtrd 2780 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((𝑛 − 1) / 2) = 𝑘)
7557, 74breqtrd 5192 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ 𝑘)
76 elnn0z 12652 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
7751, 75, 76sylanbrc 582 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℕ0)
7877ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → 𝑘 ∈ ℕ0))
79 simpr 484 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → ((2 · 𝑘) + 1) = 𝑛)
8079eqcomd 2746 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → 𝑛 = ((2 · 𝑘) + 1))
8178, 80jca2 513 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → (𝑘 ∈ ℕ0𝑛 = ((2 · 𝑘) + 1))))
8281reximdv2 3170 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛 → ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
8350, 82sylbid 240 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 → ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
84 iserodd.f . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
85 iserodd.h . . . . . . . . . . . . . . 15 (𝑛 = ((2 · 𝑘) + 1) → 𝐵 = 𝐶)
8685eleq1d 2829 . . . . . . . . . . . . . 14 (𝑛 = ((2 · 𝑘) + 1) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
8784, 86syl5ibrcom 247 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
8887rexlimdva 3161 . . . . . . . . . . . 12 (𝜑 → (∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
8988adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
9083, 89syld 47 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛𝐵 ∈ ℂ))
9190imp 406 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝐵 ∈ ℂ)
9246, 91ifclda 4583 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → if(2 ∥ 𝑛, 0, 𝐵) ∈ ℂ)
93 eqid 2740 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵)) = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))
9493fvmpt2 7040 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ if(2 ∥ 𝑛, 0, 𝐵) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
9545, 92, 94syl2anc 583 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
9644, 95sylan2 592 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
97 eldif 3986 . . . . . . . 8 (𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))) ↔ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))))
98 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑚 = 𝑘 → (2 · 𝑚) = (2 · 𝑘))
9998oveq1d 7463 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → ((2 · 𝑚) + 1) = ((2 · 𝑘) + 1))
10099cbvmptv 5279 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) = (𝑘 ∈ ℕ0 ↦ ((2 · 𝑘) + 1))
101100elrnmpt 5981 . . . . . . . . . . . 12 (𝑛 ∈ V → (𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) ↔ ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
102101elv 3493 . . . . . . . . . . 11 (𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) ↔ ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1))
10383, 102imbitrrdi 252 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))))
104103con1d 145 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) → 2 ∥ 𝑛))
105104impr 454 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → 2 ∥ 𝑛)
10697, 105sylan2b 593 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → 2 ∥ 𝑛)
107106iftrued 4556 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → if(2 ∥ 𝑛, 0, 𝐵) = 0)
10896, 107eqtrd 2780 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0)
109108ralrimiva 3152 . . . 4 (𝜑 → ∀𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0)
110 nfv 1913 . . . . 5 𝑗((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0
111 nffvmpt1 6931 . . . . . 6 𝑛((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗)
112111nfeq1 2924 . . . . 5 𝑛((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0
113 fveqeq2 6929 . . . . 5 (𝑛 = 𝑗 → (((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0 ↔ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0))
114110, 112, 113cbvralw 3312 . . . 4 (∀𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0 ↔ ∀𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
115109, 114sylib 218 . . 3 (𝜑 → ∀𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
116115r19.21bi 3257 . 2 ((𝜑𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
11792fmpttd 7149 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵)):ℕ⟶ℂ)
118117ffvelcdmda 7118 . 2 ((𝜑𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) ∈ ℂ)
119 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
120 eqid 2740 . . . . . . . 8 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
121120fvmpt2 7040 . . . . . . 7 ((𝑘 ∈ ℕ0𝐶 ∈ ℂ) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = 𝐶)
122119, 84, 121syl2anc 583 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = 𝐶)
123 ovex 7481 . . . . . . . . . 10 ((2 · 𝑘) + 1) ∈ V
12499, 33, 123fvmpt 7029 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘) = ((2 · 𝑘) + 1))
125124adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘) = ((2 · 𝑘) + 1))
126125fveq2d 6924 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((2 · 𝑘) + 1)))
127 breq2 5170 . . . . . . . . 9 (𝑛 = ((2 · 𝑘) + 1) → (2 ∥ 𝑛 ↔ 2 ∥ ((2 · 𝑘) + 1)))
128127, 85ifbieq2d 4574 . . . . . . . 8 (𝑛 = ((2 · 𝑘) + 1) → if(2 ∥ 𝑛, 0, 𝐵) = if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶))
129 nn0mulcl 12589 . . . . . . . . . 10 ((2 ∈ ℕ0𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
1306, 129sylan 579 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
131 nn0p1nn 12592 . . . . . . . . 9 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
132130, 131syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ)
133 2z 12675 . . . . . . . . . . . 12 2 ∈ ℤ
134 nn0z 12664 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
135134adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
136 dvdsmul1 16326 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ (2 · 𝑘))
137133, 135, 136sylancr 586 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 2 ∥ (2 · 𝑘))
138130nn0zd 12665 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℤ)
139 2nn 12366 . . . . . . . . . . . . 13 2 ∈ ℕ
140139a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℕ)
141 1lt2 12464 . . . . . . . . . . . . 13 1 < 2
142141a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 1 < 2)
143 ndvdsp1 16459 . . . . . . . . . . . 12 (((2 · 𝑘) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ (2 · 𝑘) → ¬ 2 ∥ ((2 · 𝑘) + 1)))
144138, 140, 142, 143syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (2 ∥ (2 · 𝑘) → ¬ 2 ∥ ((2 · 𝑘) + 1)))
145137, 144mpd 15 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ¬ 2 ∥ ((2 · 𝑘) + 1))
146145iffalsed 4559 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶) = 𝐶)
147146, 84eqeltrd 2844 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶) ∈ ℂ)
14893, 128, 132, 147fvmptd3 7052 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((2 · 𝑘) + 1)) = if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶))
149126, 148, 1463eqtrd 2784 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = 𝐶)
150122, 149eqtr4d 2783 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)))
151150ralrimiva 3152 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)))
152 nfv 1913 . . . . 5 𝑖((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘))
153 nffvmpt1 6931 . . . . . 6 𝑘((𝑘 ∈ ℕ0𝐶)‘𝑖)
154153nfeq1 2924 . . . . 5 𝑘((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖))
155 fveq2 6920 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑘 ∈ ℕ0𝐶)‘𝑖))
156 2fveq3 6925 . . . . . 6 (𝑘 = 𝑖 → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
157155, 156eqeq12d 2756 . . . . 5 (𝑘 = 𝑖 → (((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) ↔ ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖))))
158152, 154, 157cbvralw 3312 . . . 4 (∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) ↔ ∀𝑖 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
159151, 158sylib 218 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
160159r19.21bi 3257 . 2 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
1611, 2, 3, 4, 11, 43, 116, 118, 160isercoll2 15717 1 (𝜑 → (seq0( + , (𝑘 ∈ ℕ0𝐶)) ⇝ 𝐴 ↔ seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))) ⇝ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  ifcif 4548   class class class wbr 5166  cmpt 5249  ran crn 5701  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  +crp 13057  seqcseq 14052  cli 15530  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-dvds 16303
This theorem is referenced by:  atantayl3  27000  leibpilem2  27002
  Copyright terms: Public domain W3C validator