Step | Hyp | Ref
| Expression |
1 | | nn0uz 12549 |
. 2
⊢
ℕ0 = (ℤ≥‘0) |
2 | | nnuz 12550 |
. 2
⊢ ℕ =
(ℤ≥‘1) |
3 | | 0zd 12261 |
. 2
⊢ (𝜑 → 0 ∈
ℤ) |
4 | | 1zzd 12281 |
. 2
⊢ (𝜑 → 1 ∈
ℤ) |
5 | | 2nn0 12180 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
6 | 5 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℕ0) |
7 | | nn0mulcl 12199 |
. . . . 5
⊢ ((2
∈ ℕ0 ∧ 𝑚 ∈ ℕ0) → (2
· 𝑚) ∈
ℕ0) |
8 | 6, 7 | sylan 579 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (2
· 𝑚) ∈
ℕ0) |
9 | | nn0p1nn 12202 |
. . . 4
⊢ ((2
· 𝑚) ∈
ℕ0 → ((2 · 𝑚) + 1) ∈ ℕ) |
10 | 8, 9 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((2
· 𝑚) + 1) ∈
ℕ) |
11 | 10 | fmpttd 6971 |
. 2
⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1)):ℕ0⟶ℕ) |
12 | | nn0mulcl 12199 |
. . . . . 6
⊢ ((2
∈ ℕ0 ∧ 𝑖 ∈ ℕ0) → (2
· 𝑖) ∈
ℕ0) |
13 | 6, 12 | sylan 579 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (2
· 𝑖) ∈
ℕ0) |
14 | 13 | nn0red 12224 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (2
· 𝑖) ∈
ℝ) |
15 | | peano2nn0 12203 |
. . . . . 6
⊢ (𝑖 ∈ ℕ0
→ (𝑖 + 1) ∈
ℕ0) |
16 | | nn0mulcl 12199 |
. . . . . 6
⊢ ((2
∈ ℕ0 ∧ (𝑖 + 1) ∈ ℕ0) → (2
· (𝑖 + 1)) ∈
ℕ0) |
17 | 6, 15, 16 | syl2an 595 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (2
· (𝑖 + 1)) ∈
ℕ0) |
18 | 17 | nn0red 12224 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (2
· (𝑖 + 1)) ∈
ℝ) |
19 | | 1red 10907 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 1 ∈
ℝ) |
20 | | nn0re 12172 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ0
→ 𝑖 ∈
ℝ) |
21 | 20 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
ℝ) |
22 | 21 | ltp1d 11835 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 < (𝑖 + 1)) |
23 | | 1red 10907 |
. . . . . . . 8
⊢ (𝑖 ∈ ℕ0
→ 1 ∈ ℝ) |
24 | 20, 23 | readdcld 10935 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ0
→ (𝑖 + 1) ∈
ℝ) |
25 | | 2rp 12664 |
. . . . . . . 8
⊢ 2 ∈
ℝ+ |
26 | 25 | a1i 11 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ0
→ 2 ∈ ℝ+) |
27 | 20, 24, 26 | ltmul2d 12743 |
. . . . . 6
⊢ (𝑖 ∈ ℕ0
→ (𝑖 < (𝑖 + 1) ↔ (2 · 𝑖) < (2 · (𝑖 + 1)))) |
28 | 27 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑖 < (𝑖 + 1) ↔ (2 · 𝑖) < (2 · (𝑖 + 1)))) |
29 | 22, 28 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (2
· 𝑖) < (2
· (𝑖 +
1))) |
30 | 14, 18, 19, 29 | ltadd1dd 11516 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((2
· 𝑖) + 1) < ((2
· (𝑖 + 1)) +
1)) |
31 | | oveq2 7263 |
. . . . . 6
⊢ (𝑚 = 𝑖 → (2 · 𝑚) = (2 · 𝑖)) |
32 | 31 | oveq1d 7270 |
. . . . 5
⊢ (𝑚 = 𝑖 → ((2 · 𝑚) + 1) = ((2 · 𝑖) + 1)) |
33 | | eqid 2738 |
. . . . 5
⊢ (𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1)) = (𝑚 ∈
ℕ0 ↦ ((2 · 𝑚) + 1)) |
34 | | ovex 7288 |
. . . . 5
⊢ ((2
· 𝑖) + 1) ∈
V |
35 | 32, 33, 34 | fvmpt 6857 |
. . . 4
⊢ (𝑖 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) = ((2 · 𝑖) + 1)) |
36 | 35 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1))‘𝑖) = ((2 ·
𝑖) + 1)) |
37 | 15 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑖 + 1) ∈
ℕ0) |
38 | | oveq2 7263 |
. . . . . 6
⊢ (𝑚 = (𝑖 + 1) → (2 · 𝑚) = (2 · (𝑖 + 1))) |
39 | 38 | oveq1d 7270 |
. . . . 5
⊢ (𝑚 = (𝑖 + 1) → ((2 · 𝑚) + 1) = ((2 · (𝑖 + 1)) + 1)) |
40 | | ovex 7288 |
. . . . 5
⊢ ((2
· (𝑖 + 1)) + 1)
∈ V |
41 | 39, 33, 40 | fvmpt 6857 |
. . . 4
⊢ ((𝑖 + 1) ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)) = ((2 · (𝑖 + 1)) + 1)) |
42 | 37, 41 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1))‘(𝑖 + 1)) = ((2
· (𝑖 + 1)) +
1)) |
43 | 30, 36, 42 | 3brtr4d 5102 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1))‘𝑖) < ((𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1))‘(𝑖 +
1))) |
44 | | eldifi 4057 |
. . . . . . 7
⊢ (𝑛 ∈ (ℕ ∖ ran
(𝑚 ∈
ℕ0 ↦ ((2 · 𝑚) + 1))) → 𝑛 ∈ ℕ) |
45 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
46 | | 0cnd 10899 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 0 ∈
ℂ) |
47 | | nnz 12272 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
48 | 47 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
49 | | odd2np1 15978 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℤ → (¬ 2
∥ 𝑛 ↔
∃𝑘 ∈ ℤ ((2
· 𝑘) + 1) = 𝑛)) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (¬ 2 ∥
𝑛 ↔ ∃𝑘 ∈ ℤ ((2 ·
𝑘) + 1) = 𝑛)) |
51 | | simprl 767 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℤ) |
52 | | nnm1nn0 12204 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
53 | 52 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) ∈
ℕ0) |
54 | 53 | nn0red 12224 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) ∈ ℝ) |
55 | 25 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ∈
ℝ+) |
56 | 53 | nn0ge0d 12226 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ (𝑛 − 1)) |
57 | 54, 55, 56 | divge0d 12741 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ ((𝑛 − 1) / 2)) |
58 | | simprr 769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((2 · 𝑘) + 1) = 𝑛) |
59 | 58 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (((2 · 𝑘) + 1) − 1) = (𝑛 − 1)) |
60 | | 2cn 11978 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℂ |
61 | | zcn 12254 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℂ) |
62 | 61 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℂ) |
63 | | mulcl 10886 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((2
∈ ℂ ∧ 𝑘
∈ ℂ) → (2 · 𝑘) ∈ ℂ) |
64 | 60, 62, 63 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (2 · 𝑘) ∈ ℂ) |
65 | | ax-1cn 10860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℂ |
66 | | pncan 11157 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((2
· 𝑘) ∈ ℂ
∧ 1 ∈ ℂ) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘)) |
67 | 64, 65, 66 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘)) |
68 | 59, 67 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) = (2 · 𝑘)) |
69 | 68 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((𝑛 − 1) / 2) = ((2 · 𝑘) / 2)) |
70 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ∈ ℂ) |
71 | | 2ne0 12007 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ≠
0 |
72 | 71 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ≠ 0) |
73 | 62, 70, 72 | divcan3d 11686 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((2 · 𝑘) / 2) = 𝑘) |
74 | 69, 73 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((𝑛 − 1) / 2) = 𝑘) |
75 | 57, 74 | breqtrd 5096 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ 𝑘) |
76 | | elnn0z 12262 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ0
↔ (𝑘 ∈ ℤ
∧ 0 ≤ 𝑘)) |
77 | 51, 75, 76 | sylanbrc 582 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℕ0) |
78 | 77 | ex 412 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → 𝑘 ∈
ℕ0)) |
79 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = 𝑛) → ((2 · 𝑘) + 1) = 𝑛) |
80 | 79 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ ((2
· 𝑘) + 1) = 𝑛) → 𝑛 = ((2 · 𝑘) + 1)) |
81 | 78, 80 | jca2 513 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → (𝑘 ∈ ℕ0 ∧ 𝑛 = ((2 · 𝑘) + 1)))) |
82 | 81 | reximdv2 3198 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∃𝑘 ∈ ℤ ((2 ·
𝑘) + 1) = 𝑛 → ∃𝑘 ∈ ℕ0
𝑛 = ((2 · 𝑘) + 1))) |
83 | 50, 82 | sylbid 239 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (¬ 2 ∥
𝑛 → ∃𝑘 ∈ ℕ0
𝑛 = ((2 · 𝑘) + 1))) |
84 | | iserodd.f |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈
ℂ) |
85 | | iserodd.h |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = ((2 · 𝑘) + 1) → 𝐵 = 𝐶) |
86 | 85 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = ((2 · 𝑘) + 1) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
87 | 84, 86 | syl5ibrcom 246 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ)) |
88 | 87 | rexlimdva 3212 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ)) |
89 | 88 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∃𝑘 ∈ ℕ0
𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ)) |
90 | 83, 89 | syld 47 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (¬ 2 ∥
𝑛 → 𝐵 ∈ ℂ)) |
91 | 90 | imp 406 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝐵 ∈ ℂ) |
92 | 46, 91 | ifclda 4491 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(2 ∥ 𝑛, 0, 𝐵) ∈ ℂ) |
93 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ if(2
∥ 𝑛, 0, 𝐵)) = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵)) |
94 | 93 | fvmpt2 6868 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ if(2
∥ 𝑛, 0, 𝐵) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(2
∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵)) |
95 | 45, 92, 94 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵)) |
96 | 44, 95 | sylan2 592 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1)))) → ((𝑛 ∈
ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵)) |
97 | | eldif 3893 |
. . . . . . . 8
⊢ (𝑛 ∈ (ℕ ∖ ran
(𝑚 ∈
ℕ0 ↦ ((2 · 𝑚) + 1))) ↔ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1)))) |
98 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑘 → (2 · 𝑚) = (2 · 𝑘)) |
99 | 98 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑘 → ((2 · 𝑚) + 1) = ((2 · 𝑘) + 1)) |
100 | 99 | cbvmptv 5183 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1)) = (𝑘 ∈
ℕ0 ↦ ((2 · 𝑘) + 1)) |
101 | 100 | elrnmpt 5854 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ V → (𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) + 1)) ↔
∃𝑘 ∈
ℕ0 𝑛 = ((2
· 𝑘) +
1))) |
102 | 101 | elv 3428 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) + 1)) ↔
∃𝑘 ∈
ℕ0 𝑛 = ((2
· 𝑘) +
1)) |
103 | 83, 102 | syl6ibr 251 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (¬ 2 ∥
𝑛 → 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1)))) |
104 | 103 | con1d 145 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) + 1)) → 2
∥ 𝑛)) |
105 | 104 | impr 454 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) + 1)))) →
2 ∥ 𝑛) |
106 | 97, 105 | sylan2b 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1)))) → 2 ∥ 𝑛) |
107 | 106 | iftrued 4464 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1)))) → if(2 ∥ 𝑛, 0, 𝐵) = 0) |
108 | 96, 107 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1)))) → ((𝑛 ∈
ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0) |
109 | 108 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1)))((𝑛 ∈ ℕ
↦ if(2 ∥ 𝑛, 0,
𝐵))‘𝑛) = 0) |
110 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑗((𝑛 ∈ ℕ ↦ if(2
∥ 𝑛, 0, 𝐵))‘𝑛) = 0 |
111 | | nffvmpt1 6767 |
. . . . . 6
⊢
Ⅎ𝑛((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) |
112 | 111 | nfeq1 2921 |
. . . . 5
⊢
Ⅎ𝑛((𝑛 ∈ ℕ ↦ if(2
∥ 𝑛, 0, 𝐵))‘𝑗) = 0 |
113 | | fveqeq2 6765 |
. . . . 5
⊢ (𝑛 = 𝑗 → (((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0 ↔ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)) |
114 | 110, 112,
113 | cbvralw 3363 |
. . . 4
⊢
(∀𝑛 ∈
(ℕ ∖ ran (𝑚
∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0 ↔ ∀𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1)))((𝑛 ∈ ℕ
↦ if(2 ∥ 𝑛, 0,
𝐵))‘𝑗) = 0) |
115 | 109, 114 | sylib 217 |
. . 3
⊢ (𝜑 → ∀𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1)))((𝑛 ∈ ℕ
↦ if(2 ∥ 𝑛, 0,
𝐵))‘𝑗) = 0) |
116 | 115 | r19.21bi 3132 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1)))) → ((𝑛 ∈
ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0) |
117 | 92 | fmpttd 6971 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵)):ℕ⟶ℂ) |
118 | 117 | ffvelrnda 6943 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) ∈ ℂ) |
119 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
120 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
↦ 𝐶) = (𝑘 ∈ ℕ0
↦ 𝐶) |
121 | 120 | fvmpt2 6868 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ 𝐶 ∈ ℂ)
→ ((𝑘 ∈
ℕ0 ↦ 𝐶)‘𝑘) = 𝐶) |
122 | 119, 84, 121 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ 𝐶)‘𝑘) = 𝐶) |
123 | | ovex 7288 |
. . . . . . . . . 10
⊢ ((2
· 𝑘) + 1) ∈
V |
124 | 99, 33, 123 | fvmpt 6857 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘) = ((2 · 𝑘) + 1)) |
125 | 124 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0
↦ ((2 · 𝑚) +
1))‘𝑘) = ((2 ·
𝑘) + 1)) |
126 | 125 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2
∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1))‘𝑘)) = ((𝑛 ∈ ℕ ↦ if(2
∥ 𝑛, 0, 𝐵))‘((2 · 𝑘) + 1))) |
127 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝑛 = ((2 · 𝑘) + 1) → (2 ∥ 𝑛 ↔ 2 ∥ ((2 ·
𝑘) + 1))) |
128 | 127, 85 | ifbieq2d 4482 |
. . . . . . . 8
⊢ (𝑛 = ((2 · 𝑘) + 1) → if(2 ∥ 𝑛, 0, 𝐵) = if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶)) |
129 | | nn0mulcl 12199 |
. . . . . . . . . 10
⊢ ((2
∈ ℕ0 ∧ 𝑘 ∈ ℕ0) → (2
· 𝑘) ∈
ℕ0) |
130 | 6, 129 | sylan 579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (2
· 𝑘) ∈
ℕ0) |
131 | | nn0p1nn 12202 |
. . . . . . . . 9
⊢ ((2
· 𝑘) ∈
ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ) |
132 | 130, 131 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((2
· 𝑘) + 1) ∈
ℕ) |
133 | | 2z 12282 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
134 | | nn0z 12273 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
135 | 134 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℤ) |
136 | | dvdsmul1 15915 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℤ ∧ 𝑘
∈ ℤ) → 2 ∥ (2 · 𝑘)) |
137 | 133, 135,
136 | sylancr 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 2 ∥
(2 · 𝑘)) |
138 | 130 | nn0zd 12353 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (2
· 𝑘) ∈
ℤ) |
139 | | 2nn 11976 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ |
140 | 139 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 2 ∈
ℕ) |
141 | | 1lt2 12074 |
. . . . . . . . . . . . 13
⊢ 1 <
2 |
142 | 141 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 1 <
2) |
143 | | ndvdsp1 16048 |
. . . . . . . . . . . 12
⊢ (((2
· 𝑘) ∈ ℤ
∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ (2 · 𝑘) → ¬ 2 ∥ ((2
· 𝑘) +
1))) |
144 | 138, 140,
142, 143 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (2
∥ (2 · 𝑘)
→ ¬ 2 ∥ ((2 · 𝑘) + 1))) |
145 | 137, 144 | mpd 15 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ¬ 2
∥ ((2 · 𝑘) +
1)) |
146 | 145 | iffalsed 4467 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(2
∥ ((2 · 𝑘) +
1), 0, 𝐶) = 𝐶) |
147 | 146, 84 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(2
∥ ((2 · 𝑘) +
1), 0, 𝐶) ∈
ℂ) |
148 | 93, 128, 132, 147 | fvmptd3 6880 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2
∥ 𝑛, 0, 𝐵))‘((2 · 𝑘) + 1)) = if(2 ∥ ((2
· 𝑘) + 1), 0, 𝐶)) |
149 | 126, 148,
146 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2
∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1))‘𝑘)) = 𝐶) |
150 | 122, 149 | eqtr4d 2781 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ 𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1))‘𝑘))) |
151 | 150 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0
↦ 𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1))‘𝑘))) |
152 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑖((𝑘 ∈ ℕ0
↦ 𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1))‘𝑘)) |
153 | | nffvmpt1 6767 |
. . . . . 6
⊢
Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑖) |
154 | 153 | nfeq1 2921 |
. . . . 5
⊢
Ⅎ𝑘((𝑘 ∈ ℕ0
↦ 𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1))‘𝑖)) |
155 | | fveq2 6756 |
. . . . . 6
⊢ (𝑘 = 𝑖 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑘) = ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑖)) |
156 | | 2fveq3 6761 |
. . . . . 6
⊢ (𝑘 = 𝑖 → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1))‘𝑘)) = ((𝑛 ∈ ℕ ↦ if(2
∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1))‘𝑖))) |
157 | 155, 156 | eqeq12d 2754 |
. . . . 5
⊢ (𝑘 = 𝑖 → (((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1))‘𝑘)) ↔
((𝑘 ∈
ℕ0 ↦ 𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1))‘𝑖)))) |
158 | 152, 154,
157 | cbvralw 3363 |
. . . 4
⊢
(∀𝑘 ∈
ℕ0 ((𝑘
∈ ℕ0 ↦ 𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1))‘𝑘)) ↔
∀𝑖 ∈
ℕ0 ((𝑘
∈ ℕ0 ↦ 𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1))‘𝑖))) |
159 | 151, 158 | sylib 217 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ ℕ0 ((𝑘 ∈ ℕ0
↦ 𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1))‘𝑖))) |
160 | 159 | r19.21bi 3132 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ 𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2
· 𝑚) +
1))‘𝑖))) |
161 | 1, 2, 3, 4, 11, 43, 116, 118, 160 | isercoll2 15308 |
1
⊢ (𝜑 → (seq0( + , (𝑘 ∈ ℕ0
↦ 𝐶)) ⇝ 𝐴 ↔ seq1( + , (𝑛 ∈ ℕ ↦ if(2
∥ 𝑛, 0, 𝐵))) ⇝ 𝐴)) |