MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserodd Structured version   Visualization version   GIF version

Theorem iserodd 16744
Description: Collect the odd terms in a sequence. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
iserodd.f ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
iserodd.h (𝑛 = ((2 · 𝑘) + 1) → 𝐵 = 𝐶)
Assertion
Ref Expression
iserodd (𝜑 → (seq0( + , (𝑘 ∈ ℕ0𝐶)) ⇝ 𝐴 ↔ seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))) ⇝ 𝐴))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑛   𝑘,𝑛,𝜑
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑛)   𝐶(𝑘)

Proof of Theorem iserodd
Dummy variables 𝑖 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12771 . 2 0 = (ℤ‘0)
2 nnuz 12772 . 2 ℕ = (ℤ‘1)
3 0zd 12477 . 2 (𝜑 → 0 ∈ ℤ)
4 1zzd 12500 . 2 (𝜑 → 1 ∈ ℤ)
5 2nn0 12395 . . . . . 6 2 ∈ ℕ0
65a1i 11 . . . . 5 (𝜑 → 2 ∈ ℕ0)
7 nn0mulcl 12414 . . . . 5 ((2 ∈ ℕ0𝑚 ∈ ℕ0) → (2 · 𝑚) ∈ ℕ0)
86, 7sylan 580 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (2 · 𝑚) ∈ ℕ0)
9 nn0p1nn 12417 . . . 4 ((2 · 𝑚) ∈ ℕ0 → ((2 · 𝑚) + 1) ∈ ℕ)
108, 9syl 17 . . 3 ((𝜑𝑚 ∈ ℕ0) → ((2 · 𝑚) + 1) ∈ ℕ)
1110fmpttd 7048 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)):ℕ0⟶ℕ)
12 nn0mulcl 12414 . . . . . 6 ((2 ∈ ℕ0𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℕ0)
136, 12sylan 580 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℕ0)
1413nn0red 12440 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℝ)
15 peano2nn0 12418 . . . . . 6 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
16 nn0mulcl 12414 . . . . . 6 ((2 ∈ ℕ0 ∧ (𝑖 + 1) ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℕ0)
176, 15, 16syl2an 596 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℕ0)
1817nn0red 12440 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℝ)
19 1red 11110 . . . 4 ((𝜑𝑖 ∈ ℕ0) → 1 ∈ ℝ)
20 nn0re 12387 . . . . . . 7 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
2120adantl 481 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
2221ltp1d 12049 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝑖 < (𝑖 + 1))
23 1red 11110 . . . . . . . 8 (𝑖 ∈ ℕ0 → 1 ∈ ℝ)
2420, 23readdcld 11138 . . . . . . 7 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℝ)
25 2rp 12892 . . . . . . . 8 2 ∈ ℝ+
2625a1i 11 . . . . . . 7 (𝑖 ∈ ℕ0 → 2 ∈ ℝ+)
2720, 24, 26ltmul2d 12973 . . . . . 6 (𝑖 ∈ ℕ0 → (𝑖 < (𝑖 + 1) ↔ (2 · 𝑖) < (2 · (𝑖 + 1))))
2827adantl 481 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑖 < (𝑖 + 1) ↔ (2 · 𝑖) < (2 · (𝑖 + 1))))
2922, 28mpbid 232 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) < (2 · (𝑖 + 1)))
3014, 18, 19, 29ltadd1dd 11725 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((2 · 𝑖) + 1) < ((2 · (𝑖 + 1)) + 1))
31 oveq2 7354 . . . . . 6 (𝑚 = 𝑖 → (2 · 𝑚) = (2 · 𝑖))
3231oveq1d 7361 . . . . 5 (𝑚 = 𝑖 → ((2 · 𝑚) + 1) = ((2 · 𝑖) + 1))
33 eqid 2731 . . . . 5 (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) = (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))
34 ovex 7379 . . . . 5 ((2 · 𝑖) + 1) ∈ V
3532, 33, 34fvmpt 6929 . . . 4 (𝑖 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) = ((2 · 𝑖) + 1))
3635adantl 481 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) = ((2 · 𝑖) + 1))
3715adantl 481 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℕ0)
38 oveq2 7354 . . . . . 6 (𝑚 = (𝑖 + 1) → (2 · 𝑚) = (2 · (𝑖 + 1)))
3938oveq1d 7361 . . . . 5 (𝑚 = (𝑖 + 1) → ((2 · 𝑚) + 1) = ((2 · (𝑖 + 1)) + 1))
40 ovex 7379 . . . . 5 ((2 · (𝑖 + 1)) + 1) ∈ V
4139, 33, 40fvmpt 6929 . . . 4 ((𝑖 + 1) ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)) = ((2 · (𝑖 + 1)) + 1))
4237, 41syl 17 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)) = ((2 · (𝑖 + 1)) + 1))
4330, 36, 423brtr4d 5123 . 2 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) < ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)))
44 eldifi 4081 . . . . . . 7 (𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))) → 𝑛 ∈ ℕ)
45 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
46 0cnd 11102 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 0 ∈ ℂ)
47 nnz 12486 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
4847adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
49 odd2np1 16249 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (¬ 2 ∥ 𝑛 ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛))
5048, 49syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛))
51 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℤ)
52 nnm1nn0 12419 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5352ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) ∈ ℕ0)
5453nn0red 12440 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) ∈ ℝ)
5525a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ∈ ℝ+)
5653nn0ge0d 12442 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ (𝑛 − 1))
5754, 55, 56divge0d 12971 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ ((𝑛 − 1) / 2))
58 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((2 · 𝑘) + 1) = 𝑛)
5958oveq1d 7361 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (((2 · 𝑘) + 1) − 1) = (𝑛 − 1))
60 2cn 12197 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
61 zcn 12470 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
6261ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℂ)
63 mulcl 11087 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
6460, 62, 63sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (2 · 𝑘) ∈ ℂ)
65 ax-1cn 11061 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
66 pncan 11363 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
6764, 65, 66sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
6859, 67eqtr3d 2768 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) = (2 · 𝑘))
6968oveq1d 7361 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((𝑛 − 1) / 2) = ((2 · 𝑘) / 2))
70 2cnd 12200 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ∈ ℂ)
71 2ne0 12226 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
7271a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ≠ 0)
7362, 70, 72divcan3d 11899 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((2 · 𝑘) / 2) = 𝑘)
7469, 73eqtrd 2766 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((𝑛 − 1) / 2) = 𝑘)
7557, 74breqtrd 5117 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ 𝑘)
76 elnn0z 12478 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
7751, 75, 76sylanbrc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℕ0)
7877ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → 𝑘 ∈ ℕ0))
79 simpr 484 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → ((2 · 𝑘) + 1) = 𝑛)
8079eqcomd 2737 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → 𝑛 = ((2 · 𝑘) + 1))
8178, 80jca2 513 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → (𝑘 ∈ ℕ0𝑛 = ((2 · 𝑘) + 1))))
8281reximdv2 3142 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛 → ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
8350, 82sylbid 240 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 → ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
84 iserodd.f . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
85 iserodd.h . . . . . . . . . . . . . . 15 (𝑛 = ((2 · 𝑘) + 1) → 𝐵 = 𝐶)
8685eleq1d 2816 . . . . . . . . . . . . . 14 (𝑛 = ((2 · 𝑘) + 1) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
8784, 86syl5ibrcom 247 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
8887rexlimdva 3133 . . . . . . . . . . . 12 (𝜑 → (∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
8988adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
9083, 89syld 47 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛𝐵 ∈ ℂ))
9190imp 406 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝐵 ∈ ℂ)
9246, 91ifclda 4511 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → if(2 ∥ 𝑛, 0, 𝐵) ∈ ℂ)
93 eqid 2731 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵)) = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))
9493fvmpt2 6940 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ if(2 ∥ 𝑛, 0, 𝐵) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
9545, 92, 94syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
9644, 95sylan2 593 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
97 eldif 3912 . . . . . . . 8 (𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))) ↔ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))))
98 oveq2 7354 . . . . . . . . . . . . . . 15 (𝑚 = 𝑘 → (2 · 𝑚) = (2 · 𝑘))
9998oveq1d 7361 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → ((2 · 𝑚) + 1) = ((2 · 𝑘) + 1))
10099cbvmptv 5195 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) = (𝑘 ∈ ℕ0 ↦ ((2 · 𝑘) + 1))
101100elrnmpt 5898 . . . . . . . . . . . 12 (𝑛 ∈ V → (𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) ↔ ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
102101elv 3441 . . . . . . . . . . 11 (𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) ↔ ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1))
10383, 102imbitrrdi 252 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))))
104103con1d 145 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) → 2 ∥ 𝑛))
105104impr 454 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → 2 ∥ 𝑛)
10697, 105sylan2b 594 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → 2 ∥ 𝑛)
107106iftrued 4483 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → if(2 ∥ 𝑛, 0, 𝐵) = 0)
10896, 107eqtrd 2766 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0)
109108ralrimiva 3124 . . . 4 (𝜑 → ∀𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0)
110 nfv 1915 . . . . 5 𝑗((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0
111 nffvmpt1 6833 . . . . . 6 𝑛((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗)
112111nfeq1 2910 . . . . 5 𝑛((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0
113 fveqeq2 6831 . . . . 5 (𝑛 = 𝑗 → (((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0 ↔ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0))
114110, 112, 113cbvralw 3274 . . . 4 (∀𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0 ↔ ∀𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
115109, 114sylib 218 . . 3 (𝜑 → ∀𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
116115r19.21bi 3224 . 2 ((𝜑𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
11792fmpttd 7048 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵)):ℕ⟶ℂ)
118117ffvelcdmda 7017 . 2 ((𝜑𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) ∈ ℂ)
119 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
120 eqid 2731 . . . . . . . 8 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
121120fvmpt2 6940 . . . . . . 7 ((𝑘 ∈ ℕ0𝐶 ∈ ℂ) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = 𝐶)
122119, 84, 121syl2anc 584 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = 𝐶)
123 ovex 7379 . . . . . . . . . 10 ((2 · 𝑘) + 1) ∈ V
12499, 33, 123fvmpt 6929 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘) = ((2 · 𝑘) + 1))
125124adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘) = ((2 · 𝑘) + 1))
126125fveq2d 6826 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((2 · 𝑘) + 1)))
127 breq2 5095 . . . . . . . . 9 (𝑛 = ((2 · 𝑘) + 1) → (2 ∥ 𝑛 ↔ 2 ∥ ((2 · 𝑘) + 1)))
128127, 85ifbieq2d 4502 . . . . . . . 8 (𝑛 = ((2 · 𝑘) + 1) → if(2 ∥ 𝑛, 0, 𝐵) = if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶))
129 nn0mulcl 12414 . . . . . . . . . 10 ((2 ∈ ℕ0𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
1306, 129sylan 580 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
131 nn0p1nn 12417 . . . . . . . . 9 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
132130, 131syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ)
133 2z 12501 . . . . . . . . . . . 12 2 ∈ ℤ
134 nn0z 12490 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
135134adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
136 dvdsmul1 16185 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ (2 · 𝑘))
137133, 135, 136sylancr 587 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 2 ∥ (2 · 𝑘))
138130nn0zd 12491 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℤ)
139 2nn 12195 . . . . . . . . . . . . 13 2 ∈ ℕ
140139a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℕ)
141 1lt2 12288 . . . . . . . . . . . . 13 1 < 2
142141a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 1 < 2)
143 ndvdsp1 16319 . . . . . . . . . . . 12 (((2 · 𝑘) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ (2 · 𝑘) → ¬ 2 ∥ ((2 · 𝑘) + 1)))
144138, 140, 142, 143syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (2 ∥ (2 · 𝑘) → ¬ 2 ∥ ((2 · 𝑘) + 1)))
145137, 144mpd 15 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ¬ 2 ∥ ((2 · 𝑘) + 1))
146145iffalsed 4486 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶) = 𝐶)
147146, 84eqeltrd 2831 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶) ∈ ℂ)
14893, 128, 132, 147fvmptd3 6952 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((2 · 𝑘) + 1)) = if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶))
149126, 148, 1463eqtrd 2770 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = 𝐶)
150122, 149eqtr4d 2769 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)))
151150ralrimiva 3124 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)))
152 nfv 1915 . . . . 5 𝑖((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘))
153 nffvmpt1 6833 . . . . . 6 𝑘((𝑘 ∈ ℕ0𝐶)‘𝑖)
154153nfeq1 2910 . . . . 5 𝑘((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖))
155 fveq2 6822 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑘 ∈ ℕ0𝐶)‘𝑖))
156 2fveq3 6827 . . . . . 6 (𝑘 = 𝑖 → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
157155, 156eqeq12d 2747 . . . . 5 (𝑘 = 𝑖 → (((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) ↔ ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖))))
158152, 154, 157cbvralw 3274 . . . 4 (∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) ↔ ∀𝑖 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
159151, 158sylib 218 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
160159r19.21bi 3224 . 2 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
1611, 2, 3, 4, 11, 43, 116, 118, 160isercoll2 15573 1 (𝜑 → (seq0( + , (𝑘 ∈ ℕ0𝐶)) ⇝ 𝐴 ↔ seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))) ⇝ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cdif 3899  ifcif 4475   class class class wbr 5091  cmpt 5172  ran crn 5617  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143  cle 11144  cmin 11341   / cdiv 11771  cn 12122  2c2 12177  0cn0 12378  cz 12465  +crp 12887  seqcseq 13905  cli 15388  cdvds 16160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-seq 13906  df-exp 13966  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-dvds 16161
This theorem is referenced by:  atantayl3  26874  leibpilem2  26876
  Copyright terms: Public domain W3C validator