MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard3OLD Structured version   Visualization version   GIF version

Theorem findcard3OLD 9304
Description: Obsolete version of findcard3 9303 as of 7-Jan-2025. (Contributed by Mario Carneiro, 13-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
findcard3OLD.1 (𝑥 = 𝑦 → (𝜑𝜒))
findcard3OLD.2 (𝑥 = 𝐴 → (𝜑𝜏))
findcard3OLD.3 (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦𝜑) → 𝜒))
Assertion
Ref Expression
findcard3OLD (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝑥,𝐴   𝜏,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜒(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem findcard3OLD
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 8990 . . 3 (𝐴 ∈ Fin ↔ ∃𝑤 ∈ ω 𝐴𝑤)
2 nnon 7871 . . . . . 6 (𝑤 ∈ ω → 𝑤 ∈ On)
3 eleq1w 2808 . . . . . . . 8 (𝑤 = 𝑧 → (𝑤 ∈ ω ↔ 𝑧 ∈ ω))
4 breq2 5148 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑥𝑤𝑥𝑧))
54imbi1d 340 . . . . . . . . 9 (𝑤 = 𝑧 → ((𝑥𝑤𝜑) ↔ (𝑥𝑧𝜑)))
65albidv 1915 . . . . . . . 8 (𝑤 = 𝑧 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥𝑧𝜑)))
73, 6imbi12d 343 . . . . . . 7 (𝑤 = 𝑧 → ((𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)) ↔ (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))))
8 rspe 3237 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ 𝑦𝑤) → ∃𝑤 ∈ ω 𝑦𝑤)
9 isfi 8990 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑦𝑤)
108, 9sylibr 233 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑦𝑤) → 𝑦 ∈ Fin)
11 19.21v 1934 . . . . . . . . . . . . . . . 16 (∀𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)))
1211ralbii 3083 . . . . . . . . . . . . . . 15 (∀𝑧𝑤𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)))
13 ralcom4 3274 . . . . . . . . . . . . . . 15 (∀𝑧𝑤𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ ∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)))
1412, 13bitr3i 276 . . . . . . . . . . . . . 14 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) ↔ ∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)))
15 pssss 4088 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑦𝑥𝑦)
16 ssfi 9191 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥 ∈ Fin)
17 isfi 8990 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ Fin ↔ ∃𝑧 ∈ ω 𝑥𝑧)
1816, 17sylib 217 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → ∃𝑧 ∈ ω 𝑥𝑧)
1910, 15, 18syl2an 594 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ∃𝑧 ∈ ω 𝑥𝑧)
20 ensym 9017 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑧𝑧𝑥)
2120ad2antll 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑥)
22 php3 9230 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥𝑦)
2310, 22sylan 578 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → 𝑥𝑦)
24 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑦𝑤)
25 sdomentr 9129 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝑦𝑦𝑤) → 𝑥𝑤)
2623, 24, 25syl2an2r 683 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑥𝑤)
27 ensdomtr 9131 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧𝑥𝑥𝑤) → 𝑧𝑤)
2821, 26, 27syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑤)
29 nnon 7871 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ω → 𝑧 ∈ On)
3029ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧 ∈ On)
312ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑤 ∈ On)
32 sdomel 9142 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤𝑧𝑤))
3330, 31, 32syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → (𝑧𝑤𝑧𝑤))
3428, 33mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑤)
3534ex 411 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ((𝑧 ∈ ω ∧ 𝑥𝑧) → 𝑧𝑤))
36 simpr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ω ∧ 𝑥𝑧) → 𝑥𝑧)
3735, 36jca2 512 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ((𝑧 ∈ ω ∧ 𝑥𝑧) → (𝑧𝑤𝑥𝑧)))
3837reximdv2 3154 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∃𝑧 ∈ ω 𝑥𝑧 → ∃𝑧𝑤 𝑥𝑧))
3919, 38mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ∃𝑧𝑤 𝑥𝑧)
40 r19.29 3104 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ ∃𝑧𝑤 𝑥𝑧) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧))
4140expcom 412 . . . . . . . . . . . . . . . . . . 19 (∃𝑧𝑤 𝑥𝑧 → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧)))
4239, 41syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧)))
43 ordom 7875 . . . . . . . . . . . . . . . . . . . . . . 23 Ord ω
44 ordelss 6381 . . . . . . . . . . . . . . . . . . . . . . 23 ((Ord ω ∧ 𝑤 ∈ ω) → 𝑤 ⊆ ω)
4543, 44mpan 688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ω → 𝑤 ⊆ ω)
4645ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → 𝑤 ⊆ ω)
4746sseld 3972 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (𝑧𝑤𝑧 ∈ ω))
48 pm2.27 42 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ω → ((𝑧 ∈ ω → (𝑥𝑧𝜑)) → (𝑥𝑧𝜑)))
4948impd 409 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ω → (((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑))
5047, 49syl6 35 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (𝑧𝑤 → (((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑)))
5150rexlimdv 3143 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑))
5242, 51syld 47 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → 𝜑))
5352ex 411 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (𝑥𝑦 → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → 𝜑)))
5453com23 86 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → (𝑥𝑦𝜑)))
5554alimdv 1911 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦𝜑)))
5614, 55biimtrid 241 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦𝜑)))
57 findcard3OLD.3 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦𝜑) → 𝜒))
5810, 56, 57sylsyld 61 . . . . . . . . . . . 12 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → 𝜒))
5958impancom 450 . . . . . . . . . . 11 ((𝑤 ∈ ω ∧ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))) → (𝑦𝑤𝜒))
6059alrimiv 1922 . . . . . . . . . 10 ((𝑤 ∈ ω ∧ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))) → ∀𝑦(𝑦𝑤𝜒))
6160expcom 412 . . . . . . . . 9 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑦(𝑦𝑤𝜒)))
62 breq1 5147 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑤𝑦𝑤))
63 findcard3OLD.1 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜒))
6462, 63imbi12d 343 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥𝑤𝜑) ↔ (𝑦𝑤𝜒)))
6564cbvalvw 2031 . . . . . . . . 9 (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑦(𝑦𝑤𝜒))
6661, 65imbitrrdi 251 . . . . . . . 8 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)))
6766a1i 11 . . . . . . 7 (𝑤 ∈ On → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))))
687, 67tfis2 7856 . . . . . 6 (𝑤 ∈ On → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)))
692, 68mpcom 38 . . . . 5 (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))
7069rgen 3053 . . . 4 𝑤 ∈ ω ∀𝑥(𝑥𝑤𝜑)
71 r19.29 3104 . . . 4 ((∀𝑤 ∈ ω ∀𝑥(𝑥𝑤𝜑) ∧ ∃𝑤 ∈ ω 𝐴𝑤) → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
7270, 71mpan 688 . . 3 (∃𝑤 ∈ ω 𝐴𝑤 → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
731, 72sylbi 216 . 2 (𝐴 ∈ Fin → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
74 breq1 5147 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑤𝐴𝑤))
75 findcard3OLD.2 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜏))
7674, 75imbi12d 343 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑤𝜑) ↔ (𝐴𝑤𝜏)))
7776spcgv 3577 . . . 4 (𝐴 ∈ Fin → (∀𝑥(𝑥𝑤𝜑) → (𝐴𝑤𝜏)))
7877impd 409 . . 3 (𝐴 ∈ Fin → ((∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤) → 𝜏))
7978rexlimdvw 3150 . 2 (𝐴 ∈ Fin → (∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤) → 𝜏))
8073, 79mpd 15 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wcel 2098  wral 3051  wrex 3060  wss 3941  wpss 3942   class class class wbr 5144  Ord word 6364  Oncon0 6365  ωcom 7865  cen 8954  csdm 8956  Fincfn 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7866  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator