MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsiun Structured version   Visualization version   GIF version

Theorem cshwsiun 16432
Description: The set of (different!) words resulting by cyclically shifting a given word is an indexed union. (Contributed by AV, 19-May-2018.) (Revised by AV, 8-Jun-2018.) (Proof shortened by AV, 8-Nov-2018.)
Hypothesis
Ref Expression
cshwrepswhash1.m 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
Assertion
Ref Expression
cshwsiun (𝑊 ∈ Word 𝑉𝑀 = 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})
Distinct variable groups:   𝑛,𝑉,𝑤   𝑛,𝑊,𝑤
Allowed substitution hints:   𝑀(𝑤,𝑛)

Proof of Theorem cshwsiun
StepHypRef Expression
1 df-rab 3147 . . 3 {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)}
2 eqcom 2828 . . . . . . . . 9 ((𝑊 cyclShift 𝑛) = 𝑤𝑤 = (𝑊 cyclShift 𝑛))
32biimpi 218 . . . . . . . 8 ((𝑊 cyclShift 𝑛) = 𝑤𝑤 = (𝑊 cyclShift 𝑛))
43reximi 3243 . . . . . . 7 (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 → ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛))
54adantl 484 . . . . . 6 ((𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) → ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛))
6 cshwcl 14159 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑛) ∈ Word 𝑉)
76adantr 483 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑛) ∈ Word 𝑉)
8 eleq1 2900 . . . . . . . . 9 (𝑤 = (𝑊 cyclShift 𝑛) → (𝑤 ∈ Word 𝑉 ↔ (𝑊 cyclShift 𝑛) ∈ Word 𝑉))
97, 8syl5ibrcom 249 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))) → (𝑤 = (𝑊 cyclShift 𝑛) → 𝑤 ∈ Word 𝑉))
109rexlimdva 3284 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛) → 𝑤 ∈ Word 𝑉))
11 eqcom 2828 . . . . . . . . 9 (𝑤 = (𝑊 cyclShift 𝑛) ↔ (𝑊 cyclShift 𝑛) = 𝑤)
1211biimpi 218 . . . . . . . 8 (𝑤 = (𝑊 cyclShift 𝑛) → (𝑊 cyclShift 𝑛) = 𝑤)
1312reximi 3243 . . . . . . 7 (∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛) → ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
1410, 13jca2 516 . . . . . 6 (𝑊 ∈ Word 𝑉 → (∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛) → (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)))
155, 14impbid2 228 . . . . 5 (𝑊 ∈ Word 𝑉 → ((𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)))
16 velsn 4582 . . . . . . . 8 (𝑤 ∈ {(𝑊 cyclShift 𝑛)} ↔ 𝑤 = (𝑊 cyclShift 𝑛))
1716bicomi 226 . . . . . . 7 (𝑤 = (𝑊 cyclShift 𝑛) ↔ 𝑤 ∈ {(𝑊 cyclShift 𝑛)})
1817a1i 11 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑤 = (𝑊 cyclShift 𝑛) ↔ 𝑤 ∈ {(𝑊 cyclShift 𝑛)}))
1918rexbidv 3297 . . . . 5 (𝑊 ∈ Word 𝑉 → (∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)}))
2015, 19bitrd 281 . . . 4 (𝑊 ∈ Word 𝑉 → ((𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)}))
2120abbidv 2885 . . 3 (𝑊 ∈ Word 𝑉 → {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)}})
221, 21syl5eq 2868 . 2 (𝑊 ∈ Word 𝑉 → {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)}})
23 cshwrepswhash1.m . 2 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
24 df-iun 4920 . 2 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)}}
2522, 23, 243eqtr4g 2881 1 (𝑊 ∈ Word 𝑉𝑀 = 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {cab 2799  wrex 3139  {crab 3142  {csn 4566   ciun 4918  cfv 6354  (class class class)co 7155  0cc0 10536  ..^cfzo 13032  chash 13689  Word cword 13860   cyclShift ccsh 14149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-hash 13690  df-word 13861  df-concat 13922  df-substr 14002  df-pfx 14032  df-csh 14150
This theorem is referenced by:  cshwsex  16433  cshwshashnsame  16436
  Copyright terms: Public domain W3C validator