Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cshwsiun | Structured version Visualization version GIF version |
Description: The set of (different!) words resulting by cyclically shifting a given word is an indexed union. (Contributed by AV, 19-May-2018.) (Revised by AV, 8-Jun-2018.) (Proof shortened by AV, 8-Nov-2018.) |
Ref | Expression |
---|---|
cshwrepswhash1.m | ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} |
Ref | Expression |
---|---|
cshwsiun | ⊢ (𝑊 ∈ Word 𝑉 → 𝑀 = ∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3073 | . . 3 ⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)} | |
2 | eqcom 2745 | . . . . . . . . 9 ⊢ ((𝑊 cyclShift 𝑛) = 𝑤 ↔ 𝑤 = (𝑊 cyclShift 𝑛)) | |
3 | 2 | biimpi 215 | . . . . . . . 8 ⊢ ((𝑊 cyclShift 𝑛) = 𝑤 → 𝑤 = (𝑊 cyclShift 𝑛)) |
4 | 3 | reximi 3178 | . . . . . . 7 ⊢ (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 → ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)) |
5 | 4 | adantl 482 | . . . . . 6 ⊢ ((𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) → ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)) |
6 | cshwcl 14511 | . . . . . . . . . 10 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑛) ∈ Word 𝑉) | |
7 | 6 | adantr 481 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑛) ∈ Word 𝑉) |
8 | eleq1 2826 | . . . . . . . . 9 ⊢ (𝑤 = (𝑊 cyclShift 𝑛) → (𝑤 ∈ Word 𝑉 ↔ (𝑊 cyclShift 𝑛) ∈ Word 𝑉)) | |
9 | 7, 8 | syl5ibrcom 246 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → (𝑤 = (𝑊 cyclShift 𝑛) → 𝑤 ∈ Word 𝑉)) |
10 | 9 | rexlimdva 3213 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛) → 𝑤 ∈ Word 𝑉)) |
11 | eqcom 2745 | . . . . . . . . 9 ⊢ (𝑤 = (𝑊 cyclShift 𝑛) ↔ (𝑊 cyclShift 𝑛) = 𝑤) | |
12 | 11 | biimpi 215 | . . . . . . . 8 ⊢ (𝑤 = (𝑊 cyclShift 𝑛) → (𝑊 cyclShift 𝑛) = 𝑤) |
13 | 12 | reximi 3178 | . . . . . . 7 ⊢ (∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛) → ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) |
14 | 10, 13 | jca2 514 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛) → (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤))) |
15 | 5, 14 | impbid2 225 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → ((𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛))) |
16 | velsn 4577 | . . . . . . . 8 ⊢ (𝑤 ∈ {(𝑊 cyclShift 𝑛)} ↔ 𝑤 = (𝑊 cyclShift 𝑛)) | |
17 | 16 | bicomi 223 | . . . . . . 7 ⊢ (𝑤 = (𝑊 cyclShift 𝑛) ↔ 𝑤 ∈ {(𝑊 cyclShift 𝑛)}) |
18 | 17 | a1i 11 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (𝑤 = (𝑊 cyclShift 𝑛) ↔ 𝑤 ∈ {(𝑊 cyclShift 𝑛)})) |
19 | 18 | rexbidv 3226 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)})) |
20 | 15, 19 | bitrd 278 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → ((𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)})) |
21 | 20 | abbidv 2807 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)}}) |
22 | 1, 21 | eqtrid 2790 | . 2 ⊢ (𝑊 ∈ Word 𝑉 → {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)}}) |
23 | cshwrepswhash1.m | . 2 ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} | |
24 | df-iun 4926 | . 2 ⊢ ∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)}} | |
25 | 22, 23, 24 | 3eqtr4g 2803 | 1 ⊢ (𝑊 ∈ Word 𝑉 → 𝑀 = ∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 {crab 3068 {csn 4561 ∪ ciun 4924 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ..^cfzo 13382 ♯chash 14044 Word cword 14217 cyclShift ccsh 14501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-substr 14354 df-pfx 14384 df-csh 14502 |
This theorem is referenced by: cshwsex 16802 cshwshashnsame 16805 |
Copyright terms: Public domain | W3C validator |