![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssfg | Structured version Visualization version GIF version |
Description: A filter base is a subset of its generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
ssfg | ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fbelss 23328 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑡 ∈ 𝐹) → 𝑡 ⊆ 𝑋) | |
2 | 1 | ex 413 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ 𝐹 → 𝑡 ⊆ 𝑋)) |
3 | ssid 4003 | . . . . 5 ⊢ 𝑡 ⊆ 𝑡 | |
4 | sseq1 4006 | . . . . . 6 ⊢ (𝑥 = 𝑡 → (𝑥 ⊆ 𝑡 ↔ 𝑡 ⊆ 𝑡)) | |
5 | 4 | rspcev 3612 | . . . . 5 ⊢ ((𝑡 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑡) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) |
6 | 3, 5 | mpan2 689 | . . . 4 ⊢ (𝑡 ∈ 𝐹 → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) |
7 | 2, 6 | jca2 514 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ 𝐹 → (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) |
8 | elfg 23366 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) | |
9 | 7, 8 | sylibrd 258 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ 𝐹 → 𝑡 ∈ (𝑋filGen𝐹))) |
10 | 9 | ssrdv 3987 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∃wrex 3070 ⊆ wss 3947 ‘cfv 6540 (class class class)co 7405 fBascfbas 20924 filGencfg 20925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-fbas 20933 df-fg 20934 |
This theorem is referenced by: fgss2 23369 fgfil 23370 fgabs 23374 trfg 23386 isufil2 23403 ssufl 23413 ufileu 23414 filufint 23415 elfm2 23443 fmfnfmlem4 23452 fmfnfm 23453 fmco 23456 hausflim 23476 flimclslem 23479 flffbas 23490 fclsbas 23516 fclsfnflim 23522 flimfnfcls 23523 fclscmp 23525 isucn2 23775 cfilufg 23789 metust 24058 psmetutop 24067 fgcfil 24779 cmetss 24824 minveclem4a 24938 minveclem4 24940 fgmin 35243 |
Copyright terms: Public domain | W3C validator |