| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssfg | Structured version Visualization version GIF version | ||
| Description: A filter base is a subset of its generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| ssfg | ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fbelss 23718 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑡 ∈ 𝐹) → 𝑡 ⊆ 𝑋) | |
| 2 | 1 | ex 412 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ 𝐹 → 𝑡 ⊆ 𝑋)) |
| 3 | ssid 3958 | . . . . 5 ⊢ 𝑡 ⊆ 𝑡 | |
| 4 | sseq1 3961 | . . . . . 6 ⊢ (𝑥 = 𝑡 → (𝑥 ⊆ 𝑡 ↔ 𝑡 ⊆ 𝑡)) | |
| 5 | 4 | rspcev 3577 | . . . . 5 ⊢ ((𝑡 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑡) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) |
| 6 | 3, 5 | mpan2 691 | . . . 4 ⊢ (𝑡 ∈ 𝐹 → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) |
| 7 | 2, 6 | jca2 513 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ 𝐹 → (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) |
| 8 | elfg 23756 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) | |
| 9 | 7, 8 | sylibrd 259 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ 𝐹 → 𝑡 ∈ (𝑋filGen𝐹))) |
| 10 | 9 | ssrdv 3941 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 fBascfbas 21249 filGencfg 21250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-fbas 21258 df-fg 21259 |
| This theorem is referenced by: fgss2 23759 fgfil 23760 fgabs 23764 trfg 23776 isufil2 23793 ssufl 23803 ufileu 23804 filufint 23805 elfm2 23833 fmfnfmlem4 23842 fmfnfm 23843 fmco 23846 hausflim 23866 flimclslem 23869 flffbas 23880 fclsbas 23906 fclsfnflim 23912 flimfnfcls 23913 fclscmp 23915 isucn2 24164 cfilufg 24178 metust 24444 psmetutop 24453 fgcfil 25169 cmetss 25214 minveclem4a 25328 minveclem4 25330 fgmin 36344 |
| Copyright terms: Public domain | W3C validator |