| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssfg | Structured version Visualization version GIF version | ||
| Description: A filter base is a subset of its generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| ssfg | ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fbelss 23753 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑡 ∈ 𝐹) → 𝑡 ⊆ 𝑋) | |
| 2 | 1 | ex 412 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ 𝐹 → 𝑡 ⊆ 𝑋)) |
| 3 | ssid 3966 | . . . . 5 ⊢ 𝑡 ⊆ 𝑡 | |
| 4 | sseq1 3969 | . . . . . 6 ⊢ (𝑥 = 𝑡 → (𝑥 ⊆ 𝑡 ↔ 𝑡 ⊆ 𝑡)) | |
| 5 | 4 | rspcev 3585 | . . . . 5 ⊢ ((𝑡 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑡) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) |
| 6 | 3, 5 | mpan2 691 | . . . 4 ⊢ (𝑡 ∈ 𝐹 → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) |
| 7 | 2, 6 | jca2 513 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ 𝐹 → (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) |
| 8 | elfg 23791 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) | |
| 9 | 7, 8 | sylibrd 259 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ 𝐹 → 𝑡 ∈ (𝑋filGen𝐹))) |
| 10 | 9 | ssrdv 3949 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 fBascfbas 21284 filGencfg 21285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-fbas 21293 df-fg 21294 |
| This theorem is referenced by: fgss2 23794 fgfil 23795 fgabs 23799 trfg 23811 isufil2 23828 ssufl 23838 ufileu 23839 filufint 23840 elfm2 23868 fmfnfmlem4 23877 fmfnfm 23878 fmco 23881 hausflim 23901 flimclslem 23904 flffbas 23915 fclsbas 23941 fclsfnflim 23947 flimfnfcls 23948 fclscmp 23950 isucn2 24199 cfilufg 24213 metust 24479 psmetutop 24488 fgcfil 25204 cmetss 25249 minveclem4a 25363 minveclem4 25365 fgmin 36351 |
| Copyright terms: Public domain | W3C validator |