MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfg Structured version   Visualization version   GIF version

Theorem ssfg 23023
Description: A filter base is a subset of its generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
ssfg (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))

Proof of Theorem ssfg
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fbelss 22984 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑡𝐹) → 𝑡𝑋)
21ex 413 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝑡𝐹𝑡𝑋))
3 ssid 3943 . . . . 5 𝑡𝑡
4 sseq1 3946 . . . . . 6 (𝑥 = 𝑡 → (𝑥𝑡𝑡𝑡))
54rspcev 3561 . . . . 5 ((𝑡𝐹𝑡𝑡) → ∃𝑥𝐹 𝑥𝑡)
63, 5mpan2 688 . . . 4 (𝑡𝐹 → ∃𝑥𝐹 𝑥𝑡)
72, 6jca2 514 . . 3 (𝐹 ∈ (fBas‘𝑋) → (𝑡𝐹 → (𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡)))
8 elfg 23022 . . 3 (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡)))
97, 8sylibrd 258 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝑡𝐹𝑡 ∈ (𝑋filGen𝐹)))
109ssrdv 3927 1 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wrex 3065  wss 3887  cfv 6433  (class class class)co 7275  fBascfbas 20585  filGencfg 20586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-fbas 20594  df-fg 20595
This theorem is referenced by:  fgss2  23025  fgfil  23026  fgabs  23030  trfg  23042  isufil2  23059  ssufl  23069  ufileu  23070  filufint  23071  elfm2  23099  fmfnfmlem4  23108  fmfnfm  23109  fmco  23112  hausflim  23132  flimclslem  23135  flffbas  23146  fclsbas  23172  fclsfnflim  23178  flimfnfcls  23179  fclscmp  23181  isucn2  23431  cfilufg  23445  metust  23714  psmetutop  23723  fgcfil  24435  cmetss  24480  minveclem4a  24594  minveclem4  24596  fgmin  34559
  Copyright terms: Public domain W3C validator