MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfg Structured version   Visualization version   GIF version

Theorem ssfg 23376
Description: A filter base is a subset of its generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
ssfg (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))

Proof of Theorem ssfg
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fbelss 23337 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑡𝐹) → 𝑡𝑋)
21ex 414 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝑡𝐹𝑡𝑋))
3 ssid 4005 . . . . 5 𝑡𝑡
4 sseq1 4008 . . . . . 6 (𝑥 = 𝑡 → (𝑥𝑡𝑡𝑡))
54rspcev 3613 . . . . 5 ((𝑡𝐹𝑡𝑡) → ∃𝑥𝐹 𝑥𝑡)
63, 5mpan2 690 . . . 4 (𝑡𝐹 → ∃𝑥𝐹 𝑥𝑡)
72, 6jca2 515 . . 3 (𝐹 ∈ (fBas‘𝑋) → (𝑡𝐹 → (𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡)))
8 elfg 23375 . . 3 (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡)))
97, 8sylibrd 259 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝑡𝐹𝑡 ∈ (𝑋filGen𝐹)))
109ssrdv 3989 1 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  wrex 3071  wss 3949  cfv 6544  (class class class)co 7409  fBascfbas 20932  filGencfg 20933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-fbas 20941  df-fg 20942
This theorem is referenced by:  fgss2  23378  fgfil  23379  fgabs  23383  trfg  23395  isufil2  23412  ssufl  23422  ufileu  23423  filufint  23424  elfm2  23452  fmfnfmlem4  23461  fmfnfm  23462  fmco  23465  hausflim  23485  flimclslem  23488  flffbas  23499  fclsbas  23525  fclsfnflim  23531  flimfnfcls  23532  fclscmp  23534  isucn2  23784  cfilufg  23798  metust  24067  psmetutop  24076  fgcfil  24788  cmetss  24833  minveclem4a  24947  minveclem4  24949  fgmin  35255
  Copyright terms: Public domain W3C validator