| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssfg | Structured version Visualization version GIF version | ||
| Description: A filter base is a subset of its generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| ssfg | ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fbelss 23776 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑡 ∈ 𝐹) → 𝑡 ⊆ 𝑋) | |
| 2 | 1 | ex 412 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ 𝐹 → 𝑡 ⊆ 𝑋)) |
| 3 | ssid 3986 | . . . . 5 ⊢ 𝑡 ⊆ 𝑡 | |
| 4 | sseq1 3989 | . . . . . 6 ⊢ (𝑥 = 𝑡 → (𝑥 ⊆ 𝑡 ↔ 𝑡 ⊆ 𝑡)) | |
| 5 | 4 | rspcev 3606 | . . . . 5 ⊢ ((𝑡 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑡) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) |
| 6 | 3, 5 | mpan2 691 | . . . 4 ⊢ (𝑡 ∈ 𝐹 → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) |
| 7 | 2, 6 | jca2 513 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ 𝐹 → (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) |
| 8 | elfg 23814 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) | |
| 9 | 7, 8 | sylibrd 259 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ 𝐹 → 𝑡 ∈ (𝑋filGen𝐹))) |
| 10 | 9 | ssrdv 3969 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3061 ⊆ wss 3931 ‘cfv 6536 (class class class)co 7410 fBascfbas 21308 filGencfg 21309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-fbas 21317 df-fg 21318 |
| This theorem is referenced by: fgss2 23817 fgfil 23818 fgabs 23822 trfg 23834 isufil2 23851 ssufl 23861 ufileu 23862 filufint 23863 elfm2 23891 fmfnfmlem4 23900 fmfnfm 23901 fmco 23904 hausflim 23924 flimclslem 23927 flffbas 23938 fclsbas 23964 fclsfnflim 23970 flimfnfcls 23971 fclscmp 23973 isucn2 24222 cfilufg 24236 metust 24502 psmetutop 24511 fgcfil 25228 cmetss 25273 minveclem4a 25387 minveclem4 25389 fgmin 36393 |
| Copyright terms: Public domain | W3C validator |