MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfg Structured version   Visualization version   GIF version

Theorem ssfg 21895
Description: A filter base is a subset of its generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
ssfg (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))

Proof of Theorem ssfg
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fbelss 21856 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑡𝐹) → 𝑡𝑋)
21ex 397 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝑡𝐹𝑡𝑋))
3 ssid 3773 . . . . . 6 𝑡𝑡
4 sseq1 3775 . . . . . . 7 (𝑥 = 𝑡 → (𝑥𝑡𝑡𝑡))
54rspcev 3460 . . . . . 6 ((𝑡𝐹𝑡𝑡) → ∃𝑥𝐹 𝑥𝑡)
63, 5mpan2 663 . . . . 5 (𝑡𝐹 → ∃𝑥𝐹 𝑥𝑡)
76a1i 11 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝑡𝐹 → ∃𝑥𝐹 𝑥𝑡))
82, 7jcad 496 . . 3 (𝐹 ∈ (fBas‘𝑋) → (𝑡𝐹 → (𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡)))
9 elfg 21894 . . 3 (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡)))
108, 9sylibrd 249 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝑡𝐹𝑡 ∈ (𝑋filGen𝐹)))
1110ssrdv 3758 1 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 2145  wrex 3062  wss 3723  cfv 6031  (class class class)co 6792  fBascfbas 19948  filGencfg 19949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-fbas 19957  df-fg 19958
This theorem is referenced by:  fgss2  21897  fgfil  21898  fgabs  21902  trfg  21914  isufil2  21931  ssufl  21941  ufileu  21942  filufint  21943  elfm2  21971  fmfnfmlem4  21980  fmfnfm  21981  fmco  21984  hausflim  22004  flimclslem  22007  flffbas  22018  fclsbas  22044  fclsfnflim  22050  flimfnfcls  22051  fclscmp  22053  isucn2  22302  cfilufg  22316  metust  22582  psmetutop  22591  fgcfil  23287  cmetss  23331  minveclem4a  23419  minveclem4  23421  fgmin  32699
  Copyright terms: Public domain W3C validator