Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomtri2 Structured version   Visualization version   GIF version

Theorem fidomtri2 9425
 Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
fidomtri2 ((𝐴𝑉𝐵 ∈ Fin) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem fidomtri2
StepHypRef Expression
1 domnsym 8645 . 2 (𝐴𝐵 → ¬ 𝐵𝐴)
2 sdomdom 8538 . . . . . . 7 (𝐴𝐵𝐴𝐵)
32con3i 157 . . . . . 6 𝐴𝐵 → ¬ 𝐴𝐵)
4 fidomtri 9424 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝐴𝑉) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
54ancoms 462 . . . . . 6 ((𝐴𝑉𝐵 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
63, 5syl5ibr 249 . . . . 5 ((𝐴𝑉𝐵 ∈ Fin) → (¬ 𝐴𝐵𝐵𝐴))
7 ensym 8559 . . . . . . 7 (𝐵𝐴𝐴𝐵)
8 endom 8537 . . . . . . 7 (𝐴𝐵𝐴𝐵)
97, 8syl 17 . . . . . 6 (𝐵𝐴𝐴𝐵)
109con3i 157 . . . . 5 𝐴𝐵 → ¬ 𝐵𝐴)
116, 10jca2 517 . . . 4 ((𝐴𝑉𝐵 ∈ Fin) → (¬ 𝐴𝐵 → (𝐵𝐴 ∧ ¬ 𝐵𝐴)))
12 brsdom 8533 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
1311, 12syl6ibr 255 . . 3 ((𝐴𝑉𝐵 ∈ Fin) → (¬ 𝐴𝐵𝐵𝐴))
1413con1d 147 . 2 ((𝐴𝑉𝐵 ∈ Fin) → (¬ 𝐵𝐴𝐴𝐵))
151, 14impbid2 229 1 ((𝐴𝑉𝐵 ∈ Fin) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∈ wcel 2111   class class class wbr 5034   ≈ cen 8507   ≼ cdom 8508   ≺ csdm 8509  Fincfn 8510 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-sbc 3723  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-om 7574  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-card 9370 This theorem is referenced by:  gchdomtri  10058  gchdju1  10085  frgpcyg  20287
 Copyright terms: Public domain W3C validator