![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fidomtri2 | Structured version Visualization version GIF version |
Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
fidomtri2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnsym 9046 | . 2 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
2 | sdomdom 8923 | . . . . . . 7 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
3 | 2 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐴 ≼ 𝐵 → ¬ 𝐴 ≺ 𝐵) |
4 | fidomtri 9934 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ∈ 𝑉) → (𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵)) | |
5 | 4 | ancoms 460 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵)) |
6 | 3, 5 | imbitrrid 245 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (¬ 𝐴 ≼ 𝐵 → 𝐵 ≼ 𝐴)) |
7 | ensym 8946 | . . . . . . 7 ⊢ (𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵) | |
8 | endom 8922 | . . . . . . 7 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝐵 ≈ 𝐴 → 𝐴 ≼ 𝐵) |
10 | 9 | con3i 154 | . . . . 5 ⊢ (¬ 𝐴 ≼ 𝐵 → ¬ 𝐵 ≈ 𝐴) |
11 | 6, 10 | jca2 515 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (¬ 𝐴 ≼ 𝐵 → (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴))) |
12 | brsdom 8918 | . . . 4 ⊢ (𝐵 ≺ 𝐴 ↔ (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴)) | |
13 | 11, 12 | syl6ibr 252 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (¬ 𝐴 ≼ 𝐵 → 𝐵 ≺ 𝐴)) |
14 | 13 | con1d 145 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵)) |
15 | 1, 14 | impbid2 225 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 class class class wbr 5106 ≈ cen 8883 ≼ cdom 8884 ≺ csdm 8885 Fincfn 8886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-om 7804 df-1o 8413 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-card 9880 |
This theorem is referenced by: gchdomtri 10570 gchdju1 10597 frgpcyg 20996 |
Copyright terms: Public domain | W3C validator |