MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomtri2 Structured version   Visualization version   GIF version

Theorem fidomtri2 10013
Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
fidomtri2 ((𝐴𝑉𝐵 ∈ Fin) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem fidomtri2
StepHypRef Expression
1 domnsym 9118 . 2 (𝐴𝐵 → ¬ 𝐵𝐴)
2 sdomdom 8999 . . . . . . 7 (𝐴𝐵𝐴𝐵)
32con3i 154 . . . . . 6 𝐴𝐵 → ¬ 𝐴𝐵)
4 fidomtri 10012 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝐴𝑉) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
54ancoms 458 . . . . . 6 ((𝐴𝑉𝐵 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
63, 5imbitrrid 246 . . . . 5 ((𝐴𝑉𝐵 ∈ Fin) → (¬ 𝐴𝐵𝐵𝐴))
7 ensym 9022 . . . . . . 7 (𝐵𝐴𝐴𝐵)
8 endom 8998 . . . . . . 7 (𝐴𝐵𝐴𝐵)
97, 8syl 17 . . . . . 6 (𝐵𝐴𝐴𝐵)
109con3i 154 . . . . 5 𝐴𝐵 → ¬ 𝐵𝐴)
116, 10jca2 513 . . . 4 ((𝐴𝑉𝐵 ∈ Fin) → (¬ 𝐴𝐵 → (𝐵𝐴 ∧ ¬ 𝐵𝐴)))
12 brsdom 8994 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
1311, 12imbitrrdi 252 . . 3 ((𝐴𝑉𝐵 ∈ Fin) → (¬ 𝐴𝐵𝐵𝐴))
1413con1d 145 . 2 ((𝐴𝑉𝐵 ∈ Fin) → (¬ 𝐵𝐴𝐴𝐵))
151, 14impbid2 226 1 ((𝐴𝑉𝐵 ∈ Fin) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5124  cen 8961  cdom 8962  csdm 8963  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958
This theorem is referenced by:  gchdomtri  10648  gchdju1  10675  frgpcyg  21539
  Copyright terms: Public domain W3C validator