| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcel | Structured version Visualization version GIF version | ||
| Description: The transitive closure function converts the element relation to the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013.) |
| Ref | Expression |
|---|---|
| tc2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tcel | ⊢ (𝐵 ∈ 𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcvalg 9691 | . 2 ⊢ (𝐵 ∈ 𝐴 → (TC‘𝐵) = ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 2 | ssel 3940 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝑥 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝑥)) | |
| 3 | trss 5225 | . . . . . . . . 9 ⊢ (Tr 𝑥 → (𝐵 ∈ 𝑥 → 𝐵 ⊆ 𝑥)) | |
| 4 | 3 | com12 32 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑥 → (Tr 𝑥 → 𝐵 ⊆ 𝑥)) |
| 5 | 2, 4 | syl6com 37 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → (𝐴 ⊆ 𝑥 → (Tr 𝑥 → 𝐵 ⊆ 𝑥))) |
| 6 | 5 | impd 410 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → 𝐵 ⊆ 𝑥)) |
| 7 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → Tr 𝑥) | |
| 8 | 6, 7 | jca2 513 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → (𝐵 ⊆ 𝑥 ∧ Tr 𝑥))) |
| 9 | 8 | ss2abdv 4029 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 10 | intss 4933 | . . . 4 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 12 | tc2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 13 | tcvalg 9691 | . . . 4 ⊢ (𝐴 ∈ V → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 15 | 11, 14 | sseqtrrdi 3988 | . 2 ⊢ (𝐵 ∈ 𝐴 → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ (TC‘𝐴)) |
| 16 | 1, 15 | eqsstrd 3981 | 1 ⊢ (𝐵 ∈ 𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3447 ⊆ wss 3914 ∩ cint 4910 Tr wtr 5214 ‘cfv 6511 TCctc 9689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-tc 9690 |
| This theorem is referenced by: tcrank 9837 hsmexlem4 10382 |
| Copyright terms: Public domain | W3C validator |