| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcel | Structured version Visualization version GIF version | ||
| Description: The transitive closure function converts the element relation to the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013.) |
| Ref | Expression |
|---|---|
| tc2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tcel | ⊢ (𝐵 ∈ 𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcvalg 9778 | . 2 ⊢ (𝐵 ∈ 𝐴 → (TC‘𝐵) = ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 2 | ssel 3977 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝑥 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝑥)) | |
| 3 | trss 5270 | . . . . . . . . 9 ⊢ (Tr 𝑥 → (𝐵 ∈ 𝑥 → 𝐵 ⊆ 𝑥)) | |
| 4 | 3 | com12 32 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑥 → (Tr 𝑥 → 𝐵 ⊆ 𝑥)) |
| 5 | 2, 4 | syl6com 37 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → (𝐴 ⊆ 𝑥 → (Tr 𝑥 → 𝐵 ⊆ 𝑥))) |
| 6 | 5 | impd 410 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → 𝐵 ⊆ 𝑥)) |
| 7 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → Tr 𝑥) | |
| 8 | 6, 7 | jca2 513 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → (𝐵 ⊆ 𝑥 ∧ Tr 𝑥))) |
| 9 | 8 | ss2abdv 4066 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 10 | intss 4969 | . . . 4 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 12 | tc2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 13 | tcvalg 9778 | . . . 4 ⊢ (𝐴 ∈ V → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 15 | 11, 14 | sseqtrrdi 4025 | . 2 ⊢ (𝐵 ∈ 𝐴 → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ (TC‘𝐴)) |
| 16 | 1, 15 | eqsstrd 4018 | 1 ⊢ (𝐵 ∈ 𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 Vcvv 3480 ⊆ wss 3951 ∩ cint 4946 Tr wtr 5259 ‘cfv 6561 TCctc 9776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-tc 9777 |
| This theorem is referenced by: tcrank 9924 hsmexlem4 10469 |
| Copyright terms: Public domain | W3C validator |