| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcel | Structured version Visualization version GIF version | ||
| Description: The transitive closure function converts the element relation to the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013.) |
| Ref | Expression |
|---|---|
| tc2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tcel | ⊢ (𝐵 ∈ 𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcvalg 9628 | . 2 ⊢ (𝐵 ∈ 𝐴 → (TC‘𝐵) = ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 2 | ssel 3928 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝑥 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝑥)) | |
| 3 | trss 5208 | . . . . . . . . 9 ⊢ (Tr 𝑥 → (𝐵 ∈ 𝑥 → 𝐵 ⊆ 𝑥)) | |
| 4 | 3 | com12 32 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑥 → (Tr 𝑥 → 𝐵 ⊆ 𝑥)) |
| 5 | 2, 4 | syl6com 37 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → (𝐴 ⊆ 𝑥 → (Tr 𝑥 → 𝐵 ⊆ 𝑥))) |
| 6 | 5 | impd 410 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → 𝐵 ⊆ 𝑥)) |
| 7 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → Tr 𝑥) | |
| 8 | 6, 7 | jca2 513 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → (𝐵 ⊆ 𝑥 ∧ Tr 𝑥))) |
| 9 | 8 | ss2abdv 4017 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 10 | intss 4919 | . . . 4 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 12 | tc2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 13 | tcvalg 9628 | . . . 4 ⊢ (𝐴 ∈ V → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 15 | 11, 14 | sseqtrrdi 3976 | . 2 ⊢ (𝐵 ∈ 𝐴 → ∩ {𝑥 ∣ (𝐵 ⊆ 𝑥 ∧ Tr 𝑥)} ⊆ (TC‘𝐴)) |
| 16 | 1, 15 | eqsstrd 3969 | 1 ⊢ (𝐵 ∈ 𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 ⊆ wss 3902 ∩ cint 4897 Tr wtr 5198 ‘cfv 6481 TCctc 9626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-tc 9627 |
| This theorem is referenced by: tcrank 9774 hsmexlem4 10317 |
| Copyright terms: Public domain | W3C validator |