MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcel Structured version   Visualization version   GIF version

Theorem tcel 9635
Description: The transitive closure function converts the element relation to the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
tc2.1 𝐴 ∈ V
Assertion
Ref Expression
tcel (𝐵𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴))

Proof of Theorem tcel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tcvalg 9628 . 2 (𝐵𝐴 → (TC‘𝐵) = {𝑥 ∣ (𝐵𝑥 ∧ Tr 𝑥)})
2 ssel 3928 . . . . . . . 8 (𝐴𝑥 → (𝐵𝐴𝐵𝑥))
3 trss 5208 . . . . . . . . 9 (Tr 𝑥 → (𝐵𝑥𝐵𝑥))
43com12 32 . . . . . . . 8 (𝐵𝑥 → (Tr 𝑥𝐵𝑥))
52, 4syl6com 37 . . . . . . 7 (𝐵𝐴 → (𝐴𝑥 → (Tr 𝑥𝐵𝑥)))
65impd 410 . . . . . 6 (𝐵𝐴 → ((𝐴𝑥 ∧ Tr 𝑥) → 𝐵𝑥))
7 simpr 484 . . . . . 6 ((𝐴𝑥 ∧ Tr 𝑥) → Tr 𝑥)
86, 7jca2 513 . . . . 5 (𝐵𝐴 → ((𝐴𝑥 ∧ Tr 𝑥) → (𝐵𝑥 ∧ Tr 𝑥)))
98ss2abdv 4017 . . . 4 (𝐵𝐴 → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵𝑥 ∧ Tr 𝑥)})
10 intss 4919 . . . 4 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵𝑥 ∧ Tr 𝑥)} → {𝑥 ∣ (𝐵𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
119, 10syl 17 . . 3 (𝐵𝐴 {𝑥 ∣ (𝐵𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
12 tc2.1 . . . 4 𝐴 ∈ V
13 tcvalg 9628 . . . 4 (𝐴 ∈ V → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
1412, 13ax-mp 5 . . 3 (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
1511, 14sseqtrrdi 3976 . 2 (𝐵𝐴 {𝑥 ∣ (𝐵𝑥 ∧ Tr 𝑥)} ⊆ (TC‘𝐴))
161, 15eqsstrd 3969 1 (𝐵𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436  wss 3902   cint 4897  Tr wtr 5198  cfv 6481  TCctc 9626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-tc 9627
This theorem is referenced by:  tcrank  9774  hsmexlem4  10317
  Copyright terms: Public domain W3C validator