MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcel Structured version   Visualization version   GIF version

Theorem tcel 9660
Description: The transitive closure function converts the element relation to the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
tc2.1 𝐴 ∈ V
Assertion
Ref Expression
tcel (𝐵𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴))

Proof of Theorem tcel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tcvalg 9653 . 2 (𝐵𝐴 → (TC‘𝐵) = {𝑥 ∣ (𝐵𝑥 ∧ Tr 𝑥)})
2 ssel 3931 . . . . . . . 8 (𝐴𝑥 → (𝐵𝐴𝐵𝑥))
3 trss 5212 . . . . . . . . 9 (Tr 𝑥 → (𝐵𝑥𝐵𝑥))
43com12 32 . . . . . . . 8 (𝐵𝑥 → (Tr 𝑥𝐵𝑥))
52, 4syl6com 37 . . . . . . 7 (𝐵𝐴 → (𝐴𝑥 → (Tr 𝑥𝐵𝑥)))
65impd 410 . . . . . 6 (𝐵𝐴 → ((𝐴𝑥 ∧ Tr 𝑥) → 𝐵𝑥))
7 simpr 484 . . . . . 6 ((𝐴𝑥 ∧ Tr 𝑥) → Tr 𝑥)
86, 7jca2 513 . . . . 5 (𝐵𝐴 → ((𝐴𝑥 ∧ Tr 𝑥) → (𝐵𝑥 ∧ Tr 𝑥)))
98ss2abdv 4020 . . . 4 (𝐵𝐴 → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵𝑥 ∧ Tr 𝑥)})
10 intss 4922 . . . 4 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐵𝑥 ∧ Tr 𝑥)} → {𝑥 ∣ (𝐵𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
119, 10syl 17 . . 3 (𝐵𝐴 {𝑥 ∣ (𝐵𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
12 tc2.1 . . . 4 𝐴 ∈ V
13 tcvalg 9653 . . . 4 (𝐴 ∈ V → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
1412, 13ax-mp 5 . . 3 (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
1511, 14sseqtrrdi 3979 . 2 (𝐵𝐴 {𝑥 ∣ (𝐵𝑥 ∧ Tr 𝑥)} ⊆ (TC‘𝐴))
161, 15eqsstrd 3972 1 (𝐵𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3438  wss 3905   cint 4899  Tr wtr 5202  cfv 6486  TCctc 9651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-tc 9652
This theorem is referenced by:  tcrank  9799  hsmexlem4  10342
  Copyright terms: Public domain W3C validator