MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfib Structured version   Visualization version   GIF version

Theorem fodomfib 9238
Description: Equivalence of an onto mapping and dominance for a nonempty finite set. Unlike fodomb 10439 for arbitrary sets, this theorem does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.) Avoid ax-pow 5307. (Revised by BTernaryTau, 23-Jun-2025.)
Assertion
Ref Expression
fodomfib (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fodomfib
StepHypRef Expression
1 fof 6740 . . . . . . . . . . . . 13 (𝑓:𝐴onto𝐵𝑓:𝐴𝐵)
21fdmd 6666 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵 → dom 𝑓 = 𝐴)
32eqeq1d 2731 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐴 = ∅))
4 dm0rn0 5871 . . . . . . . . . . . 12 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
5 forn 6743 . . . . . . . . . . . . 13 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
65eqeq1d 2731 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵 → (ran 𝑓 = ∅ ↔ 𝐵 = ∅))
74, 6bitrid 283 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐵 = ∅))
83, 7bitr3d 281 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → (𝐴 = ∅ ↔ 𝐵 = ∅))
98necon3bid 2969 . . . . . . . . 9 (𝑓:𝐴onto𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
109biimpac 478 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → 𝐵 ≠ ∅)
1110adantll 714 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑓:𝐴onto𝐵) → 𝐵 ≠ ∅)
12 vex 3442 . . . . . . . . . . . 12 𝑓 ∈ V
1312rnex 7850 . . . . . . . . . . 11 ran 𝑓 ∈ V
145, 13eqeltrrdi 2837 . . . . . . . . . 10 (𝑓:𝐴onto𝐵𝐵 ∈ V)
1514adantl 481 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto𝐵) → 𝐵 ∈ V)
16 0sdomg 9030 . . . . . . . . 9 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
1715, 16syl 17 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵 ≠ ∅))
1817adantlr 715 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵 ≠ ∅))
1911, 18mpbird 257 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑓:𝐴onto𝐵) → ∅ ≺ 𝐵)
2019ex 412 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑓:𝐴onto𝐵 → ∅ ≺ 𝐵))
21 fodomfi 9219 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto𝐵) → 𝐵𝐴)
2221ex 412 . . . . . 6 (𝐴 ∈ Fin → (𝑓:𝐴onto𝐵𝐵𝐴))
2322adantr 480 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑓:𝐴onto𝐵𝐵𝐴))
2420, 23jcad 512 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2524exlimdv 1933 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑓 𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2625expimpd 453 . 2 (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵𝐴)))
27 0fi 8974 . . . . 5 ∅ ∈ Fin
28 sdomdomtrfi 9125 . . . . 5 ((∅ ∈ Fin ∧ ∅ ≺ 𝐵𝐵𝐴) → ∅ ≺ 𝐴)
2927, 28mp3an1 1450 . . . 4 ((∅ ≺ 𝐵𝐵𝐴) → ∅ ≺ 𝐴)
30 0sdomg 9030 . . . 4 (𝐴 ∈ Fin → (∅ ≺ 𝐴𝐴 ≠ ∅))
3129, 30imbitrid 244 . . 3 (𝐴 ∈ Fin → ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ≠ ∅))
32 fodomfir 9237 . . . 4 ((𝐴 ∈ Fin ∧ ∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
33323expib 1122 . . 3 (𝐴 ∈ Fin → ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵))
3431, 33jcad 512 . 2 (𝐴 ∈ Fin → ((∅ ≺ 𝐵𝐵𝐴) → (𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵)))
3526, 34impbid 212 1 (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3438  c0 4286   class class class wbr 5095  dom cdm 5623  ran crn 5624  ontowfo 6484  cdom 8877  csdm 8878  Fincfn 8879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-1o 8395  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator