MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfib Structured version   Visualization version   GIF version

Theorem fodomfib 8482
Description: Equivalence of an onto mapping and dominance for a nonempty finite set. Unlike fodomb 9636 for arbitrary sets, this theorem does not require the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.)
Assertion
Ref Expression
fodomfib (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fodomfib
StepHypRef Expression
1 fof 6331 . . . . . . . . . . . . 13 (𝑓:𝐴onto𝐵𝑓:𝐴𝐵)
21fdmd 6265 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵 → dom 𝑓 = 𝐴)
32eqeq1d 2801 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐴 = ∅))
4 dm0rn0 5545 . . . . . . . . . . . 12 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
5 forn 6334 . . . . . . . . . . . . 13 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
65eqeq1d 2801 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵 → (ran 𝑓 = ∅ ↔ 𝐵 = ∅))
74, 6syl5bb 275 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐵 = ∅))
83, 7bitr3d 273 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → (𝐴 = ∅ ↔ 𝐵 = ∅))
98necon3bid 3015 . . . . . . . . 9 (𝑓:𝐴onto𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
109biimpac 471 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → 𝐵 ≠ ∅)
1110adantll 706 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑓:𝐴onto𝐵) → 𝐵 ≠ ∅)
12 vex 3388 . . . . . . . . . . . 12 𝑓 ∈ V
1312rnex 7335 . . . . . . . . . . 11 ran 𝑓 ∈ V
145, 13syl6eqelr 2887 . . . . . . . . . 10 (𝑓:𝐴onto𝐵𝐵 ∈ V)
1514adantl 474 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto𝐵) → 𝐵 ∈ V)
16 0sdomg 8331 . . . . . . . . 9 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
1715, 16syl 17 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵 ≠ ∅))
1817adantlr 707 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵 ≠ ∅))
1911, 18mpbird 249 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑓:𝐴onto𝐵) → ∅ ≺ 𝐵)
2019ex 402 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑓:𝐴onto𝐵 → ∅ ≺ 𝐵))
21 fodomfi 8481 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto𝐵) → 𝐵𝐴)
2221ex 402 . . . . . 6 (𝐴 ∈ Fin → (𝑓:𝐴onto𝐵𝐵𝐴))
2322adantr 473 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑓:𝐴onto𝐵𝐵𝐴))
2420, 23jcad 509 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2524exlimdv 2029 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑓 𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2625expimpd 446 . 2 (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵𝐴)))
27 sdomdomtr 8335 . . . 4 ((∅ ≺ 𝐵𝐵𝐴) → ∅ ≺ 𝐴)
28 0sdomg 8331 . . . 4 (𝐴 ∈ Fin → (∅ ≺ 𝐴𝐴 ≠ ∅))
2927, 28syl5ib 236 . . 3 (𝐴 ∈ Fin → ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ≠ ∅))
30 fodomr 8353 . . . 4 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
3130a1i 11 . . 3 (𝐴 ∈ Fin → ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵))
3229, 31jcad 509 . 2 (𝐴 ∈ Fin → ((∅ ≺ 𝐵𝐵𝐴) → (𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵)))
3326, 32impbid 204 1 (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wex 1875  wcel 2157  wne 2971  Vcvv 3385  c0 4115   class class class wbr 4843  dom cdm 5312  ran crn 5313  ontowfo 6099  cdom 8193  csdm 8194  Fincfn 8195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-om 7300  df-1o 7799  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator