MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomb Structured version   Visualization version   GIF version

Theorem fodomb 10564
Description: Equivalence of an onto mapping and dominance for a nonempty set. Proposition 10.35 of [TakeutiZaring] p. 93. (Contributed by NM, 29-Jul-2004.)
Assertion
Ref Expression
fodomb ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fodomb
StepHypRef Expression
1 fof 6821 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵𝑓:𝐴𝐵)
21fdmd 6747 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → dom 𝑓 = 𝐴)
32eqeq1d 2737 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐴 = ∅))
4 dm0rn0 5938 . . . . . . . . . . 11 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
5 forn 6824 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
65eqeq1d 2737 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → (ran 𝑓 = ∅ ↔ 𝐵 = ∅))
74, 6bitrid 283 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐵 = ∅))
83, 7bitr3d 281 . . . . . . . . 9 (𝑓:𝐴onto𝐵 → (𝐴 = ∅ ↔ 𝐵 = ∅))
98necon3bid 2983 . . . . . . . 8 (𝑓:𝐴onto𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
109biimpac 478 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → 𝐵 ≠ ∅)
11 vex 3482 . . . . . . . . . . . 12 𝑓 ∈ V
1211dmex 7932 . . . . . . . . . . 11 dom 𝑓 ∈ V
132, 12eqeltrrdi 2848 . . . . . . . . . 10 (𝑓:𝐴onto𝐵𝐴 ∈ V)
14 focdmex 7979 . . . . . . . . . 10 (𝐴 ∈ V → (𝑓:𝐴onto𝐵𝐵 ∈ V))
1513, 14mpcom 38 . . . . . . . . 9 (𝑓:𝐴onto𝐵𝐵 ∈ V)
16 0sdomg 9143 . . . . . . . . 9 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
1715, 16syl 17 . . . . . . . 8 (𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵 ≠ ∅))
1817adantl 481 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵 ≠ ∅))
1910, 18mpbird 257 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → ∅ ≺ 𝐵)
2019ex 412 . . . . 5 (𝐴 ≠ ∅ → (𝑓:𝐴onto𝐵 → ∅ ≺ 𝐵))
21 fodomg 10560 . . . . . 6 (𝐴 ∈ V → (𝑓:𝐴onto𝐵𝐵𝐴))
2213, 21mpcom 38 . . . . 5 (𝑓:𝐴onto𝐵𝐵𝐴)
2320, 22jca2 513 . . . 4 (𝐴 ≠ ∅ → (𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2423exlimdv 1931 . . 3 (𝐴 ≠ ∅ → (∃𝑓 𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2524imp 406 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵𝐴))
26 sdomdomtr 9149 . . . 4 ((∅ ≺ 𝐵𝐵𝐴) → ∅ ≺ 𝐴)
27 reldom 8990 . . . . . . 7 Rel ≼
2827brrelex2i 5746 . . . . . 6 (𝐵𝐴𝐴 ∈ V)
2928adantl 481 . . . . 5 ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ∈ V)
30 0sdomg 9143 . . . . 5 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
3129, 30syl 17 . . . 4 ((∅ ≺ 𝐵𝐵𝐴) → (∅ ≺ 𝐴𝐴 ≠ ∅))
3226, 31mpbid 232 . . 3 ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ≠ ∅)
33 fodomr 9167 . . 3 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
3432, 33jca 511 . 2 ((∅ ≺ 𝐵𝐵𝐴) → (𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵))
3525, 34impbii 209 1 ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  Vcvv 3478  c0 4339   class class class wbr 5148  dom cdm 5689  ran crn 5690  ontowfo 6561  cdom 8982  csdm 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-ac2 10501
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-card 9977  df-acn 9980  df-ac 10154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator