MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomb Structured version   Visualization version   GIF version

Theorem fodomb 10595
Description: Equivalence of an onto mapping and dominance for a nonempty set. Proposition 10.35 of [TakeutiZaring] p. 93. (Contributed by NM, 29-Jul-2004.)
Assertion
Ref Expression
fodomb ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fodomb
StepHypRef Expression
1 fof 6834 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵𝑓:𝐴𝐵)
21fdmd 6757 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → dom 𝑓 = 𝐴)
32eqeq1d 2742 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐴 = ∅))
4 dm0rn0 5949 . . . . . . . . . . 11 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
5 forn 6837 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
65eqeq1d 2742 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → (ran 𝑓 = ∅ ↔ 𝐵 = ∅))
74, 6bitrid 283 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐵 = ∅))
83, 7bitr3d 281 . . . . . . . . 9 (𝑓:𝐴onto𝐵 → (𝐴 = ∅ ↔ 𝐵 = ∅))
98necon3bid 2991 . . . . . . . 8 (𝑓:𝐴onto𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
109biimpac 478 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → 𝐵 ≠ ∅)
11 vex 3492 . . . . . . . . . . . 12 𝑓 ∈ V
1211dmex 7949 . . . . . . . . . . 11 dom 𝑓 ∈ V
132, 12eqeltrrdi 2853 . . . . . . . . . 10 (𝑓:𝐴onto𝐵𝐴 ∈ V)
14 focdmex 7996 . . . . . . . . . 10 (𝐴 ∈ V → (𝑓:𝐴onto𝐵𝐵 ∈ V))
1513, 14mpcom 38 . . . . . . . . 9 (𝑓:𝐴onto𝐵𝐵 ∈ V)
16 0sdomg 9170 . . . . . . . . 9 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
1715, 16syl 17 . . . . . . . 8 (𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵 ≠ ∅))
1817adantl 481 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵 ≠ ∅))
1910, 18mpbird 257 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → ∅ ≺ 𝐵)
2019ex 412 . . . . 5 (𝐴 ≠ ∅ → (𝑓:𝐴onto𝐵 → ∅ ≺ 𝐵))
21 fodomg 10591 . . . . . 6 (𝐴 ∈ V → (𝑓:𝐴onto𝐵𝐵𝐴))
2213, 21mpcom 38 . . . . 5 (𝑓:𝐴onto𝐵𝐵𝐴)
2320, 22jca2 513 . . . 4 (𝐴 ≠ ∅ → (𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2423exlimdv 1932 . . 3 (𝐴 ≠ ∅ → (∃𝑓 𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2524imp 406 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵𝐴))
26 sdomdomtr 9176 . . . 4 ((∅ ≺ 𝐵𝐵𝐴) → ∅ ≺ 𝐴)
27 reldom 9009 . . . . . . 7 Rel ≼
2827brrelex2i 5757 . . . . . 6 (𝐵𝐴𝐴 ∈ V)
2928adantl 481 . . . . 5 ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ∈ V)
30 0sdomg 9170 . . . . 5 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
3129, 30syl 17 . . . 4 ((∅ ≺ 𝐵𝐵𝐴) → (∅ ≺ 𝐴𝐴 ≠ ∅))
3226, 31mpbid 232 . . 3 ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ≠ ∅)
33 fodomr 9194 . . 3 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
3432, 33jca 511 . 2 ((∅ ≺ 𝐵𝐵𝐴) → (𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵))
3525, 34impbii 209 1 ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  Vcvv 3488  c0 4352   class class class wbr 5166  dom cdm 5700  ran crn 5701  ontowfo 6571  cdom 9001  csdm 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-card 10008  df-acn 10011  df-ac 10185
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator