MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomb Structured version   Visualization version   GIF version

Theorem fodomb 10523
Description: Equivalence of an onto mapping and dominance for a nonempty set. Proposition 10.35 of [TakeutiZaring] p. 93. (Contributed by NM, 29-Jul-2004.)
Assertion
Ref Expression
fodomb ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fodomb
StepHypRef Expression
1 fof 6805 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵𝑓:𝐴𝐵)
21fdmd 6728 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → dom 𝑓 = 𝐴)
32eqeq1d 2734 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐴 = ∅))
4 dm0rn0 5924 . . . . . . . . . . 11 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
5 forn 6808 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
65eqeq1d 2734 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → (ran 𝑓 = ∅ ↔ 𝐵 = ∅))
74, 6bitrid 282 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐵 = ∅))
83, 7bitr3d 280 . . . . . . . . 9 (𝑓:𝐴onto𝐵 → (𝐴 = ∅ ↔ 𝐵 = ∅))
98necon3bid 2985 . . . . . . . 8 (𝑓:𝐴onto𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
109biimpac 479 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → 𝐵 ≠ ∅)
11 vex 3478 . . . . . . . . . . . 12 𝑓 ∈ V
1211dmex 7904 . . . . . . . . . . 11 dom 𝑓 ∈ V
132, 12eqeltrrdi 2842 . . . . . . . . . 10 (𝑓:𝐴onto𝐵𝐴 ∈ V)
14 focdmex 7944 . . . . . . . . . 10 (𝐴 ∈ V → (𝑓:𝐴onto𝐵𝐵 ∈ V))
1513, 14mpcom 38 . . . . . . . . 9 (𝑓:𝐴onto𝐵𝐵 ∈ V)
16 0sdomg 9106 . . . . . . . . 9 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
1715, 16syl 17 . . . . . . . 8 (𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵 ≠ ∅))
1817adantl 482 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵 ≠ ∅))
1910, 18mpbird 256 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → ∅ ≺ 𝐵)
2019ex 413 . . . . 5 (𝐴 ≠ ∅ → (𝑓:𝐴onto𝐵 → ∅ ≺ 𝐵))
21 fodomg 10519 . . . . . 6 (𝐴 ∈ V → (𝑓:𝐴onto𝐵𝐵𝐴))
2213, 21mpcom 38 . . . . 5 (𝑓:𝐴onto𝐵𝐵𝐴)
2320, 22jca2 514 . . . 4 (𝐴 ≠ ∅ → (𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2423exlimdv 1936 . . 3 (𝐴 ≠ ∅ → (∃𝑓 𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2524imp 407 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵𝐴))
26 sdomdomtr 9112 . . . 4 ((∅ ≺ 𝐵𝐵𝐴) → ∅ ≺ 𝐴)
27 reldom 8947 . . . . . . 7 Rel ≼
2827brrelex2i 5733 . . . . . 6 (𝐵𝐴𝐴 ∈ V)
2928adantl 482 . . . . 5 ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ∈ V)
30 0sdomg 9106 . . . . 5 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
3129, 30syl 17 . . . 4 ((∅ ≺ 𝐵𝐵𝐴) → (∅ ≺ 𝐴𝐴 ≠ ∅))
3226, 31mpbid 231 . . 3 ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ≠ ∅)
33 fodomr 9130 . . 3 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
3432, 33jca 512 . 2 ((∅ ≺ 𝐵𝐵𝐴) → (𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵))
3525, 34impbii 208 1 ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2940  Vcvv 3474  c0 4322   class class class wbr 5148  dom cdm 5676  ran crn 5677  ontowfo 6541  cdom 8939  csdm 8940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-ac2 10460
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-card 9936  df-acn 9939  df-ac 10113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator