Proof of Theorem fodomb
| Step | Hyp | Ref
| Expression |
| 1 | | fof 6795 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐴–onto→𝐵 → 𝑓:𝐴⟶𝐵) |
| 2 | 1 | fdmd 6721 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴–onto→𝐵 → dom 𝑓 = 𝐴) |
| 3 | 2 | eqeq1d 2738 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–onto→𝐵 → (dom 𝑓 = ∅ ↔ 𝐴 = ∅)) |
| 4 | | dm0rn0 5909 |
. . . . . . . . . . 11
⊢ (dom
𝑓 = ∅ ↔ ran
𝑓 =
∅) |
| 5 | | forn 6798 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) |
| 6 | 5 | eqeq1d 2738 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴–onto→𝐵 → (ran 𝑓 = ∅ ↔ 𝐵 = ∅)) |
| 7 | 4, 6 | bitrid 283 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–onto→𝐵 → (dom 𝑓 = ∅ ↔ 𝐵 = ∅)) |
| 8 | 3, 7 | bitr3d 281 |
. . . . . . . . 9
⊢ (𝑓:𝐴–onto→𝐵 → (𝐴 = ∅ ↔ 𝐵 = ∅)) |
| 9 | 8 | necon3bid 2977 |
. . . . . . . 8
⊢ (𝑓:𝐴–onto→𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅)) |
| 10 | 9 | biimpac 478 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧ 𝑓:𝐴–onto→𝐵) → 𝐵 ≠ ∅) |
| 11 | | vex 3468 |
. . . . . . . . . . . 12
⊢ 𝑓 ∈ V |
| 12 | 11 | dmex 7910 |
. . . . . . . . . . 11
⊢ dom 𝑓 ∈ V |
| 13 | 2, 12 | eqeltrrdi 2844 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–onto→𝐵 → 𝐴 ∈ V) |
| 14 | | focdmex 7959 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → (𝑓:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
| 15 | 13, 14 | mpcom 38 |
. . . . . . . . 9
⊢ (𝑓:𝐴–onto→𝐵 → 𝐵 ∈ V) |
| 16 | | 0sdomg 9123 |
. . . . . . . . 9
⊢ (𝐵 ∈ V → (∅
≺ 𝐵 ↔ 𝐵 ≠ ∅)) |
| 17 | 15, 16 | syl 17 |
. . . . . . . 8
⊢ (𝑓:𝐴–onto→𝐵 → (∅ ≺ 𝐵 ↔ 𝐵 ≠ ∅)) |
| 18 | 17 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧ 𝑓:𝐴–onto→𝐵) → (∅ ≺ 𝐵 ↔ 𝐵 ≠ ∅)) |
| 19 | 10, 18 | mpbird 257 |
. . . . . 6
⊢ ((𝐴 ≠ ∅ ∧ 𝑓:𝐴–onto→𝐵) → ∅ ≺ 𝐵) |
| 20 | 19 | ex 412 |
. . . . 5
⊢ (𝐴 ≠ ∅ → (𝑓:𝐴–onto→𝐵 → ∅ ≺ 𝐵)) |
| 21 | | fodomg 10541 |
. . . . . 6
⊢ (𝐴 ∈ V → (𝑓:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) |
| 22 | 13, 21 | mpcom 38 |
. . . . 5
⊢ (𝑓:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴) |
| 23 | 20, 22 | jca2 513 |
. . . 4
⊢ (𝐴 ≠ ∅ → (𝑓:𝐴–onto→𝐵 → (∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴))) |
| 24 | 23 | exlimdv 1933 |
. . 3
⊢ (𝐴 ≠ ∅ →
(∃𝑓 𝑓:𝐴–onto→𝐵 → (∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴))) |
| 25 | 24 | imp 406 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴–onto→𝐵) → (∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴)) |
| 26 | | sdomdomtr 9129 |
. . . 4
⊢ ((∅
≺ 𝐵 ∧ 𝐵 ≼ 𝐴) → ∅ ≺ 𝐴) |
| 27 | | reldom 8970 |
. . . . . . 7
⊢ Rel
≼ |
| 28 | 27 | brrelex2i 5716 |
. . . . . 6
⊢ (𝐵 ≼ 𝐴 → 𝐴 ∈ V) |
| 29 | 28 | adantl 481 |
. . . . 5
⊢ ((∅
≺ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ∈ V) |
| 30 | | 0sdomg 9123 |
. . . . 5
⊢ (𝐴 ∈ V → (∅
≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 31 | 29, 30 | syl 17 |
. . . 4
⊢ ((∅
≺ 𝐵 ∧ 𝐵 ≼ 𝐴) → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 32 | 26, 31 | mpbid 232 |
. . 3
⊢ ((∅
≺ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≠ ∅) |
| 33 | | fodomr 9147 |
. . 3
⊢ ((∅
≺ 𝐵 ∧ 𝐵 ≼ 𝐴) → ∃𝑓 𝑓:𝐴–onto→𝐵) |
| 34 | 32, 33 | jca 511 |
. 2
⊢ ((∅
≺ 𝐵 ∧ 𝐵 ≼ 𝐴) → (𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴–onto→𝐵)) |
| 35 | 25, 34 | impbii 209 |
1
⊢ ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴–onto→𝐵) ↔ (∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴)) |