MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomb Structured version   Visualization version   GIF version

Theorem fodomb 10213
Description: Equivalence of an onto mapping and dominance for a nonempty set. Proposition 10.35 of [TakeutiZaring] p. 93. (Contributed by NM, 29-Jul-2004.)
Assertion
Ref Expression
fodomb ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fodomb
StepHypRef Expression
1 fof 6672 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵𝑓:𝐴𝐵)
21fdmd 6595 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → dom 𝑓 = 𝐴)
32eqeq1d 2740 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐴 = ∅))
4 dm0rn0 5823 . . . . . . . . . . 11 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
5 forn 6675 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
65eqeq1d 2740 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → (ran 𝑓 = ∅ ↔ 𝐵 = ∅))
74, 6syl5bb 282 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐵 = ∅))
83, 7bitr3d 280 . . . . . . . . 9 (𝑓:𝐴onto𝐵 → (𝐴 = ∅ ↔ 𝐵 = ∅))
98necon3bid 2987 . . . . . . . 8 (𝑓:𝐴onto𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
109biimpac 478 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → 𝐵 ≠ ∅)
11 vex 3426 . . . . . . . . . . . 12 𝑓 ∈ V
1211dmex 7732 . . . . . . . . . . 11 dom 𝑓 ∈ V
132, 12eqeltrrdi 2848 . . . . . . . . . 10 (𝑓:𝐴onto𝐵𝐴 ∈ V)
14 fornex 7772 . . . . . . . . . 10 (𝐴 ∈ V → (𝑓:𝐴onto𝐵𝐵 ∈ V))
1513, 14mpcom 38 . . . . . . . . 9 (𝑓:𝐴onto𝐵𝐵 ∈ V)
16 0sdomg 8842 . . . . . . . . 9 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
1715, 16syl 17 . . . . . . . 8 (𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵 ≠ ∅))
1817adantl 481 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵 ≠ ∅))
1910, 18mpbird 256 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → ∅ ≺ 𝐵)
2019ex 412 . . . . 5 (𝐴 ≠ ∅ → (𝑓:𝐴onto𝐵 → ∅ ≺ 𝐵))
21 fodomg 10209 . . . . . 6 (𝐴 ∈ V → (𝑓:𝐴onto𝐵𝐵𝐴))
2213, 21mpcom 38 . . . . 5 (𝑓:𝐴onto𝐵𝐵𝐴)
2320, 22jca2 513 . . . 4 (𝐴 ≠ ∅ → (𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2423exlimdv 1937 . . 3 (𝐴 ≠ ∅ → (∃𝑓 𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2524imp 406 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵𝐴))
26 sdomdomtr 8846 . . . 4 ((∅ ≺ 𝐵𝐵𝐴) → ∅ ≺ 𝐴)
27 reldom 8697 . . . . . . 7 Rel ≼
2827brrelex2i 5635 . . . . . 6 (𝐵𝐴𝐴 ∈ V)
2928adantl 481 . . . . 5 ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ∈ V)
30 0sdomg 8842 . . . . 5 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
3129, 30syl 17 . . . 4 ((∅ ≺ 𝐵𝐵𝐴) → (∅ ≺ 𝐴𝐴 ≠ ∅))
3226, 31mpbid 231 . . 3 ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ≠ ∅)
33 fodomr 8864 . . 3 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
3432, 33jca 511 . 2 ((∅ ≺ 𝐵𝐵𝐴) → (𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵))
3525, 34impbii 208 1 ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  Vcvv 3422  c0 4253   class class class wbr 5070  dom cdm 5580  ran crn 5581  ontowfo 6416  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-ac2 10150
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-card 9628  df-acn 9631  df-ac 9803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator