MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtriord Structured version   Visualization version   GIF version

Theorem domtriord 8770
Description: Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009.)
Assertion
Ref Expression
domtriord ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem domtriord
StepHypRef Expression
1 sbth 8744 . . . . 5 ((𝐵𝐴𝐴𝐵) → 𝐵𝐴)
21expcom 417 . . . 4 (𝐴𝐵 → (𝐵𝐴𝐵𝐴))
32a1i 11 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐵𝐴𝐵𝐴)))
4 iman 405 . . . 4 ((𝐵𝐴𝐵𝐴) ↔ ¬ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
5 brsdom 8629 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
64, 5xchbinxr 338 . . 3 ((𝐵𝐴𝐵𝐴) ↔ ¬ 𝐵𝐴)
73, 6syl6ib 254 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ¬ 𝐵𝐴))
8 onelss 6233 . . . . . . . . . 10 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
9 ssdomg 8652 . . . . . . . . . 10 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
108, 9syld 47 . . . . . . . . 9 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
1110adantl 485 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
1211con3d 155 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 → ¬ 𝐴𝐵))
13 ontri1 6225 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1413ancoms 462 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1512, 14sylibrd 262 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
16 ssdomg 8652 . . . . . . 7 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
1716adantr 484 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴𝐵𝐴))
1815, 17syld 47 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
19 ensym 8655 . . . . . . 7 (𝐵𝐴𝐴𝐵)
20 endom 8633 . . . . . . 7 (𝐴𝐵𝐴𝐵)
2119, 20syl 17 . . . . . 6 (𝐵𝐴𝐴𝐵)
2221con3i 157 . . . . 5 𝐴𝐵 → ¬ 𝐵𝐴)
2318, 22jca2 517 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 → (𝐵𝐴 ∧ ¬ 𝐵𝐴)))
2423, 5syl6ibr 255 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
2524con1d 147 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵𝐴𝐴𝐵))
267, 25impbid 215 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2112  wss 3853   class class class wbr 5039  Oncon0 6191  cen 8601  cdom 8602  csdm 8603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607
This theorem is referenced by:  sdomel  8771  cardsdomel  9555  alephord  9654  alephsucdom  9658  alephdom2  9666
  Copyright terms: Public domain W3C validator