![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domtriord | Structured version Visualization version GIF version |
Description: Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009.) |
Ref | Expression |
---|---|
domtriord | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbth 8433 | . . . . 5 ⊢ ((𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐵 ≈ 𝐴) | |
2 | 1 | expcom 406 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → (𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴)) |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → (𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴))) |
4 | iman 393 | . . . 4 ⊢ ((𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴) ↔ ¬ (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴)) | |
5 | brsdom 8329 | . . . 4 ⊢ (𝐵 ≺ 𝐴 ↔ (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴)) | |
6 | 4, 5 | xchbinxr 327 | . . 3 ⊢ ((𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴) ↔ ¬ 𝐵 ≺ 𝐴) |
7 | 3, 6 | syl6ib 243 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴)) |
8 | onelss 6071 | . . . . . . . . . 10 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) | |
9 | ssdomg 8352 | . . . . . . . . . 10 ⊢ (𝐵 ∈ On → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
10 | 8, 9 | syld 47 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → 𝐴 ≼ 𝐵)) |
11 | 10 | adantl 474 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 → 𝐴 ≼ 𝐵)) |
12 | 11 | con3d 150 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → ¬ 𝐴 ∈ 𝐵)) |
13 | ontri1 6063 | . . . . . . . 8 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
14 | 13 | ancoms 451 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) |
15 | 12, 14 | sylibrd 251 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → 𝐵 ⊆ 𝐴)) |
16 | ssdomg 8352 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
17 | 16 | adantr 473 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) |
18 | 15, 17 | syld 47 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → 𝐵 ≼ 𝐴)) |
19 | ensym 8355 | . . . . . . 7 ⊢ (𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵) | |
20 | endom 8333 | . . . . . . 7 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
21 | 19, 20 | syl 17 | . . . . . 6 ⊢ (𝐵 ≈ 𝐴 → 𝐴 ≼ 𝐵) |
22 | 21 | con3i 152 | . . . . 5 ⊢ (¬ 𝐴 ≼ 𝐵 → ¬ 𝐵 ≈ 𝐴) |
23 | 18, 22 | jca2 506 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴))) |
24 | 23, 5 | syl6ibr 244 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → 𝐵 ≺ 𝐴)) |
25 | 24 | con1d 142 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵)) |
26 | 7, 25 | impbid 204 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∈ wcel 2050 ⊆ wss 3829 class class class wbr 4929 Oncon0 6029 ≈ cen 8303 ≼ cdom 8304 ≺ csdm 8305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-ord 6032 df-on 6033 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 |
This theorem is referenced by: sdomel 8460 cardsdomel 9197 alephord 9295 alephsucdom 9299 alephdom2 9307 |
Copyright terms: Public domain | W3C validator |