MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtriord Structured version   Visualization version   GIF version

Theorem domtriord 8910
Description: Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009.)
Assertion
Ref Expression
domtriord ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem domtriord
StepHypRef Expression
1 sbth 8880 . . . . 5 ((𝐵𝐴𝐴𝐵) → 𝐵𝐴)
21expcom 414 . . . 4 (𝐴𝐵 → (𝐵𝐴𝐵𝐴))
32a1i 11 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐵𝐴𝐵𝐴)))
4 iman 402 . . . 4 ((𝐵𝐴𝐵𝐴) ↔ ¬ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
5 brsdom 8763 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
64, 5xchbinxr 335 . . 3 ((𝐵𝐴𝐵𝐴) ↔ ¬ 𝐵𝐴)
73, 6syl6ib 250 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ¬ 𝐵𝐴))
8 onelss 6308 . . . . . . . . . 10 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
9 ssdomg 8786 . . . . . . . . . 10 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
108, 9syld 47 . . . . . . . . 9 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
1110adantl 482 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
1211con3d 152 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 → ¬ 𝐴𝐵))
13 ontri1 6300 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1413ancoms 459 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1512, 14sylibrd 258 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
16 ssdomg 8786 . . . . . . 7 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
1716adantr 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴𝐵𝐴))
1815, 17syld 47 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
19 ensym 8789 . . . . . . 7 (𝐵𝐴𝐴𝐵)
20 endom 8767 . . . . . . 7 (𝐴𝐵𝐴𝐵)
2119, 20syl 17 . . . . . 6 (𝐵𝐴𝐴𝐵)
2221con3i 154 . . . . 5 𝐴𝐵 → ¬ 𝐵𝐴)
2318, 22jca2 514 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 → (𝐵𝐴 ∧ ¬ 𝐵𝐴)))
2423, 5syl6ibr 251 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
2524con1d 145 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵𝐴𝐴𝐵))
267, 25impbid 211 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2106  wss 3887   class class class wbr 5074  Oncon0 6266  cen 8730  cdom 8731  csdm 8732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736
This theorem is referenced by:  sdomel  8911  cardsdomel  9732  alephord  9831  alephsucdom  9835  alephdom2  9843
  Copyright terms: Public domain W3C validator