| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domtriord | Structured version Visualization version GIF version | ||
| Description: Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009.) |
| Ref | Expression |
|---|---|
| domtriord | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbth 9112 | . . . . 5 ⊢ ((𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐵 ≈ 𝐴) | |
| 2 | 1 | expcom 413 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → (𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴)) |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → (𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴))) |
| 4 | iman 401 | . . . 4 ⊢ ((𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴) ↔ ¬ (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴)) | |
| 5 | brsdom 8994 | . . . 4 ⊢ (𝐵 ≺ 𝐴 ↔ (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴)) | |
| 6 | 4, 5 | xchbinxr 335 | . . 3 ⊢ ((𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴) ↔ ¬ 𝐵 ≺ 𝐴) |
| 7 | 3, 6 | imbitrdi 251 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴)) |
| 8 | onelss 6399 | . . . . . . . . . 10 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) | |
| 9 | ssdomg 9019 | . . . . . . . . . 10 ⊢ (𝐵 ∈ On → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
| 10 | 8, 9 | syld 47 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → 𝐴 ≼ 𝐵)) |
| 11 | 10 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 → 𝐴 ≼ 𝐵)) |
| 12 | 11 | con3d 152 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → ¬ 𝐴 ∈ 𝐵)) |
| 13 | ontri1 6391 | . . . . . . . 8 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
| 14 | 13 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) |
| 15 | 12, 14 | sylibrd 259 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → 𝐵 ⊆ 𝐴)) |
| 16 | ssdomg 9019 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) |
| 18 | 15, 17 | syld 47 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → 𝐵 ≼ 𝐴)) |
| 19 | ensym 9022 | . . . . . . 7 ⊢ (𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵) | |
| 20 | endom 8998 | . . . . . . 7 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
| 21 | 19, 20 | syl 17 | . . . . . 6 ⊢ (𝐵 ≈ 𝐴 → 𝐴 ≼ 𝐵) |
| 22 | 21 | con3i 154 | . . . . 5 ⊢ (¬ 𝐴 ≼ 𝐵 → ¬ 𝐵 ≈ 𝐴) |
| 23 | 18, 22 | jca2 513 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴))) |
| 24 | 23, 5 | imbitrrdi 252 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → 𝐵 ≺ 𝐴)) |
| 25 | 24 | con1d 145 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵)) |
| 26 | 7, 25 | impbid 212 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3931 class class class wbr 5124 Oncon0 6357 ≈ cen 8961 ≼ cdom 8962 ≺ csdm 8963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 |
| This theorem is referenced by: sdomel 9143 cardsdomel 9993 alephord 10094 alephsucdom 10098 alephdom2 10106 |
| Copyright terms: Public domain | W3C validator |