![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domtriord | Structured version Visualization version GIF version |
Description: Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009.) |
Ref | Expression |
---|---|
domtriord | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbth 9089 | . . . . 5 ⊢ ((𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐵 ≈ 𝐴) | |
2 | 1 | expcom 414 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → (𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴)) |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → (𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴))) |
4 | iman 402 | . . . 4 ⊢ ((𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴) ↔ ¬ (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴)) | |
5 | brsdom 8967 | . . . 4 ⊢ (𝐵 ≺ 𝐴 ↔ (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴)) | |
6 | 4, 5 | xchbinxr 334 | . . 3 ⊢ ((𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴) ↔ ¬ 𝐵 ≺ 𝐴) |
7 | 3, 6 | imbitrdi 250 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴)) |
8 | onelss 6403 | . . . . . . . . . 10 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) | |
9 | ssdomg 8992 | . . . . . . . . . 10 ⊢ (𝐵 ∈ On → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
10 | 8, 9 | syld 47 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → 𝐴 ≼ 𝐵)) |
11 | 10 | adantl 482 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 → 𝐴 ≼ 𝐵)) |
12 | 11 | con3d 152 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → ¬ 𝐴 ∈ 𝐵)) |
13 | ontri1 6395 | . . . . . . . 8 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
14 | 13 | ancoms 459 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) |
15 | 12, 14 | sylibrd 258 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → 𝐵 ⊆ 𝐴)) |
16 | ssdomg 8992 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
17 | 16 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) |
18 | 15, 17 | syld 47 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → 𝐵 ≼ 𝐴)) |
19 | ensym 8995 | . . . . . . 7 ⊢ (𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵) | |
20 | endom 8971 | . . . . . . 7 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
21 | 19, 20 | syl 17 | . . . . . 6 ⊢ (𝐵 ≈ 𝐴 → 𝐴 ≼ 𝐵) |
22 | 21 | con3i 154 | . . . . 5 ⊢ (¬ 𝐴 ≼ 𝐵 → ¬ 𝐵 ≈ 𝐴) |
23 | 18, 22 | jca2 514 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴))) |
24 | 23, 5 | syl6ibr 251 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ≼ 𝐵 → 𝐵 ≺ 𝐴)) |
25 | 24 | con1d 145 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵)) |
26 | 7, 25 | impbid 211 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3947 class class class wbr 5147 Oncon0 6361 ≈ cen 8932 ≼ cdom 8933 ≺ csdm 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 |
This theorem is referenced by: sdomel 9120 cardsdomel 9965 alephord 10066 alephsucdom 10070 alephdom2 10078 |
Copyright terms: Public domain | W3C validator |