MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtriord Structured version   Visualization version   GIF version

Theorem domtriord 9125
Description: Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009.)
Assertion
Ref Expression
domtriord ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem domtriord
StepHypRef Expression
1 sbth 9095 . . . . 5 ((𝐵𝐴𝐴𝐵) → 𝐵𝐴)
21expcom 413 . . . 4 (𝐴𝐵 → (𝐵𝐴𝐵𝐴))
32a1i 11 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐵𝐴𝐵𝐴)))
4 iman 401 . . . 4 ((𝐵𝐴𝐵𝐴) ↔ ¬ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
5 brsdom 8973 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
64, 5xchbinxr 335 . . 3 ((𝐵𝐴𝐵𝐴) ↔ ¬ 𝐵𝐴)
73, 6imbitrdi 250 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ¬ 𝐵𝐴))
8 onelss 6400 . . . . . . . . . 10 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
9 ssdomg 8998 . . . . . . . . . 10 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
108, 9syld 47 . . . . . . . . 9 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
1110adantl 481 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
1211con3d 152 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 → ¬ 𝐴𝐵))
13 ontri1 6392 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1413ancoms 458 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1512, 14sylibrd 259 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
16 ssdomg 8998 . . . . . . 7 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
1716adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴𝐵𝐴))
1815, 17syld 47 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
19 ensym 9001 . . . . . . 7 (𝐵𝐴𝐴𝐵)
20 endom 8977 . . . . . . 7 (𝐴𝐵𝐴𝐵)
2119, 20syl 17 . . . . . 6 (𝐵𝐴𝐴𝐵)
2221con3i 154 . . . . 5 𝐴𝐵 → ¬ 𝐵𝐴)
2318, 22jca2 513 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 → (𝐵𝐴 ∧ ¬ 𝐵𝐴)))
2423, 5imbitrrdi 251 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
2524con1d 145 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵𝐴𝐴𝐵))
267, 25impbid 211 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2098  wss 3943   class class class wbr 5141  Oncon0 6358  cen 8938  cdom 8939  csdm 8940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944
This theorem is referenced by:  sdomel  9126  cardsdomel  9971  alephord  10072  alephsucdom  10076  alephdom2  10084
  Copyright terms: Public domain W3C validator