Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expge1 | Structured version Visualization version GIF version |
Description: A real greater than or equal to 1 raised to a nonnegative integer is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expge1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5074 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (1 ≤ 𝑧 ↔ 1 ≤ 𝐴)) | |
2 | 1 | elrab 3617 | . . . . 5 ⊢ (𝐴 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 1 ≤ 𝐴)) |
3 | ssrab2 4009 | . . . . . . 7 ⊢ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ⊆ ℝ | |
4 | ax-resscn 10859 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
5 | 3, 4 | sstri 3926 | . . . . . 6 ⊢ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ⊆ ℂ |
6 | breq2 5074 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (1 ≤ 𝑧 ↔ 1 ≤ 𝑥)) | |
7 | 6 | elrab 3617 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) |
8 | breq2 5074 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (1 ≤ 𝑧 ↔ 1 ≤ 𝑦)) | |
9 | 8 | elrab 3617 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) |
10 | breq2 5074 | . . . . . . . 8 ⊢ (𝑧 = (𝑥 · 𝑦) → (1 ≤ 𝑧 ↔ 1 ≤ (𝑥 · 𝑦))) | |
11 | remulcl 10887 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
12 | 11 | ad2ant2r 743 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ) |
13 | 1t1e1 12065 | . . . . . . . . . 10 ⊢ (1 · 1) = 1 | |
14 | 1re 10906 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℝ | |
15 | 0le1 11428 | . . . . . . . . . . . . . 14 ⊢ 0 ≤ 1 | |
16 | 14, 15 | pm3.2i 470 | . . . . . . . . . . . . 13 ⊢ (1 ∈ ℝ ∧ 0 ≤ 1) |
17 | 16 | jctl 523 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℝ → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑥 ∈ ℝ)) |
18 | 16 | jctl 523 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ℝ → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑦 ∈ ℝ)) |
19 | lemul12a 11763 | . . . . . . . . . . . 12 ⊢ ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑥 ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑦 ∈ ℝ)) → ((1 ≤ 𝑥 ∧ 1 ≤ 𝑦) → (1 · 1) ≤ (𝑥 · 𝑦))) | |
20 | 17, 18, 19 | syl2an 595 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 ≤ 𝑥 ∧ 1 ≤ 𝑦) → (1 · 1) ≤ (𝑥 · 𝑦))) |
21 | 20 | imp 406 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (1 ≤ 𝑥 ∧ 1 ≤ 𝑦)) → (1 · 1) ≤ (𝑥 · 𝑦)) |
22 | 13, 21 | eqbrtrrid 5106 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (1 ≤ 𝑥 ∧ 1 ≤ 𝑦)) → 1 ≤ (𝑥 · 𝑦)) |
23 | 22 | an4s 656 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ (𝑥 · 𝑦)) |
24 | 10, 12, 23 | elrabd 3619 | . . . . . . 7 ⊢ (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
25 | 7, 9, 24 | syl2anb 597 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
26 | 1le1 11533 | . . . . . . 7 ⊢ 1 ≤ 1 | |
27 | breq2 5074 | . . . . . . . 8 ⊢ (𝑧 = 1 → (1 ≤ 𝑧 ↔ 1 ≤ 1)) | |
28 | 27 | elrab 3617 | . . . . . . 7 ⊢ (1 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 1 ≤ 1)) |
29 | 14, 26, 28 | mpbir2an 707 | . . . . . 6 ⊢ 1 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} |
30 | 5, 25, 29 | expcllem 13721 | . . . . 5 ⊢ ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
31 | 2, 30 | sylanbr 581 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
32 | 31 | 3impa 1108 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
33 | 32 | 3com23 1124 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
34 | breq2 5074 | . . . 4 ⊢ (𝑧 = (𝐴↑𝑁) → (1 ≤ 𝑧 ↔ 1 ≤ (𝐴↑𝑁))) | |
35 | 34 | elrab 3617 | . . 3 ⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ ((𝐴↑𝑁) ∈ ℝ ∧ 1 ≤ (𝐴↑𝑁))) |
36 | 35 | simprbi 496 | . 2 ⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} → 1 ≤ (𝐴↑𝑁)) |
37 | 33, 36 | syl 17 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 {crab 3067 class class class wbr 5070 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 · cmul 10807 ≤ cle 10941 ℕ0cn0 12163 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: expgt1 13749 expge1d 13811 leexp2a 13818 hgt750lem 32531 tgoldbachgnn 32539 |
Copyright terms: Public domain | W3C validator |