MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expge1 Structured version   Visualization version   GIF version

Theorem expge1 13280
Description: Nonnegative integer exponentiation with a mantissa greater than or equal to 1 is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expge1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴𝑁))

Proof of Theorem expge1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4930 . . . . . 6 (𝑧 = 𝐴 → (1 ≤ 𝑧 ↔ 1 ≤ 𝐴))
21elrab 3590 . . . . 5 (𝐴 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 1 ≤ 𝐴))
3 ssrab2 3941 . . . . . . 7 {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ⊆ ℝ
4 ax-resscn 10391 . . . . . . 7 ℝ ⊆ ℂ
53, 4sstri 3862 . . . . . 6 {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ⊆ ℂ
6 breq2 4930 . . . . . . . 8 (𝑧 = 𝑥 → (1 ≤ 𝑧 ↔ 1 ≤ 𝑥))
76elrab 3590 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
8 breq2 4930 . . . . . . . 8 (𝑧 = 𝑦 → (1 ≤ 𝑧 ↔ 1 ≤ 𝑦))
98elrab 3590 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦))
10 breq2 4930 . . . . . . . 8 (𝑧 = (𝑥 · 𝑦) → (1 ≤ 𝑧 ↔ 1 ≤ (𝑥 · 𝑦)))
11 remulcl 10419 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1211ad2ant2r 735 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ)
13 1t1e1 11608 . . . . . . . . . 10 (1 · 1) = 1
14 1re 10438 . . . . . . . . . . . . . 14 1 ∈ ℝ
15 0le1 10963 . . . . . . . . . . . . . 14 0 ≤ 1
1614, 15pm3.2i 463 . . . . . . . . . . . . 13 (1 ∈ ℝ ∧ 0 ≤ 1)
1716jctl 516 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑥 ∈ ℝ))
1816jctl 516 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑦 ∈ ℝ))
19 lemul12a 11298 . . . . . . . . . . . 12 ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑥 ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑦 ∈ ℝ)) → ((1 ≤ 𝑥 ∧ 1 ≤ 𝑦) → (1 · 1) ≤ (𝑥 · 𝑦)))
2017, 18, 19syl2an 587 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 ≤ 𝑥 ∧ 1 ≤ 𝑦) → (1 · 1) ≤ (𝑥 · 𝑦)))
2120imp 398 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (1 ≤ 𝑥 ∧ 1 ≤ 𝑦)) → (1 · 1) ≤ (𝑥 · 𝑦))
2213, 21syl5eqbrr 4962 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (1 ≤ 𝑥 ∧ 1 ≤ 𝑦)) → 1 ≤ (𝑥 · 𝑦))
2322an4s 648 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ (𝑥 · 𝑦))
2410, 12, 23elrabd 3593 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
257, 9, 24syl2anb 589 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
26 1le1 11068 . . . . . . 7 1 ≤ 1
27 breq2 4930 . . . . . . . 8 (𝑧 = 1 → (1 ≤ 𝑧 ↔ 1 ≤ 1))
2827elrab 3590 . . . . . . 7 (1 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 1 ≤ 1))
2914, 26, 28mpbir2an 699 . . . . . 6 1 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}
305, 25, 29expcllem 13254 . . . . 5 ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
312, 30sylanbr 574 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
32313impa 1091 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
33323com23 1107 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
34 breq2 4930 . . . 4 (𝑧 = (𝐴𝑁) → (1 ≤ 𝑧 ↔ 1 ≤ (𝐴𝑁)))
3534elrab 3590 . . 3 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ ((𝐴𝑁) ∈ ℝ ∧ 1 ≤ (𝐴𝑁)))
3635simprbi 489 . 2 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} → 1 ≤ (𝐴𝑁))
3733, 36syl 17 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069  wcel 2051  {crab 3087   class class class wbr 4926  (class class class)co 6975  cc 10332  cr 10333  0cc0 10334  1c1 10335   · cmul 10339  cle 10474  0cn0 11706  cexp 13243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-n0 11707  df-z 11793  df-uz 12058  df-seq 13184  df-exp 13244
This theorem is referenced by:  expgt1  13281  expge1d  13343  leexp2a  13350  hgt750lem  31603  tgoldbachgnn  31611
  Copyright terms: Public domain W3C validator