MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expge1 Structured version   Visualization version   GIF version

Theorem expge1 14150
Description: A real greater than or equal to 1 raised to a nonnegative integer is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expge1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴𝑁))

Proof of Theorem expge1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5170 . . . . . 6 (𝑧 = 𝐴 → (1 ≤ 𝑧 ↔ 1 ≤ 𝐴))
21elrab 3708 . . . . 5 (𝐴 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 1 ≤ 𝐴))
3 ssrab2 4103 . . . . . . 7 {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ⊆ ℝ
4 ax-resscn 11241 . . . . . . 7 ℝ ⊆ ℂ
53, 4sstri 4018 . . . . . 6 {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ⊆ ℂ
6 breq2 5170 . . . . . . . 8 (𝑧 = 𝑥 → (1 ≤ 𝑧 ↔ 1 ≤ 𝑥))
76elrab 3708 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
8 breq2 5170 . . . . . . . 8 (𝑧 = 𝑦 → (1 ≤ 𝑧 ↔ 1 ≤ 𝑦))
98elrab 3708 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦))
10 breq2 5170 . . . . . . . 8 (𝑧 = (𝑥 · 𝑦) → (1 ≤ 𝑧 ↔ 1 ≤ (𝑥 · 𝑦)))
11 remulcl 11269 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1211ad2ant2r 746 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ)
13 1t1e1 12455 . . . . . . . . . 10 (1 · 1) = 1
14 1re 11290 . . . . . . . . . . . . . 14 1 ∈ ℝ
15 0le1 11813 . . . . . . . . . . . . . 14 0 ≤ 1
1614, 15pm3.2i 470 . . . . . . . . . . . . 13 (1 ∈ ℝ ∧ 0 ≤ 1)
1716jctl 523 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑥 ∈ ℝ))
1816jctl 523 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑦 ∈ ℝ))
19 lemul12a 12152 . . . . . . . . . . . 12 ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑥 ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑦 ∈ ℝ)) → ((1 ≤ 𝑥 ∧ 1 ≤ 𝑦) → (1 · 1) ≤ (𝑥 · 𝑦)))
2017, 18, 19syl2an 595 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 ≤ 𝑥 ∧ 1 ≤ 𝑦) → (1 · 1) ≤ (𝑥 · 𝑦)))
2120imp 406 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (1 ≤ 𝑥 ∧ 1 ≤ 𝑦)) → (1 · 1) ≤ (𝑥 · 𝑦))
2213, 21eqbrtrrid 5202 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (1 ≤ 𝑥 ∧ 1 ≤ 𝑦)) → 1 ≤ (𝑥 · 𝑦))
2322an4s 659 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ (𝑥 · 𝑦))
2410, 12, 23elrabd 3710 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
257, 9, 24syl2anb 597 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
26 1le1 11918 . . . . . . 7 1 ≤ 1
27 breq2 5170 . . . . . . . 8 (𝑧 = 1 → (1 ≤ 𝑧 ↔ 1 ≤ 1))
2827elrab 3708 . . . . . . 7 (1 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 1 ≤ 1))
2914, 26, 28mpbir2an 710 . . . . . 6 1 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}
305, 25, 29expcllem 14123 . . . . 5 ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
312, 30sylanbr 581 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
32313impa 1110 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
33323com23 1126 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
34 breq2 5170 . . . 4 (𝑧 = (𝐴𝑁) → (1 ≤ 𝑧 ↔ 1 ≤ (𝐴𝑁)))
3534elrab 3708 . . 3 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ ((𝐴𝑁) ∈ ℝ ∧ 1 ≤ (𝐴𝑁)))
3635simprbi 496 . 2 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} → 1 ≤ (𝐴𝑁))
3733, 36syl 17 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108  {crab 3443   class class class wbr 5166  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  cle 11325  0cn0 12553  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-exp 14113
This theorem is referenced by:  expgt1  14151  expge1d  14215  leexp2a  14222  hgt750lem  34628  tgoldbachgnn  34636
  Copyright terms: Public domain W3C validator