Step | Hyp | Ref
| Expression |
1 | | dirkercncf.d |
. . . 4
β’ π· = (π β β β¦ (π¦ β β β¦ if((π¦ mod (2 Β· Ο)) = 0,
(((2 Β· π) + 1) / (2
Β· Ο)), ((sinβ((π + (1 / 2)) Β· π¦)) / ((2 Β· Ο) Β·
(sinβ(π¦ /
2))))))) |
2 | 1 | dirkerf 44799 |
. . 3
β’ (π β β β (π·βπ):ββΆβ) |
3 | | ax-resscn 11163 |
. . . . . . . . . . 11
β’ β
β β |
4 | 3 | a1i 11 |
. . . . . . . . . 10
β’ (π β β β β
β β) |
5 | 2, 4 | fssd 6732 |
. . . . . . . . 9
β’ (π β β β (π·βπ):ββΆβ) |
6 | 5 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β (π·βπ):ββΆβ) |
7 | | oveq1 7412 |
. . . . . . . . . . . . . 14
β’ (π¦ = π€ β (π¦ mod (2 Β· Ο)) = (π€ mod (2 Β· Ο))) |
8 | 7 | eqeq1d 2734 |
. . . . . . . . . . . . 13
β’ (π¦ = π€ β ((π¦ mod (2 Β· Ο)) = 0 β (π€ mod (2 Β· Ο)) =
0)) |
9 | | oveq2 7413 |
. . . . . . . . . . . . . . 15
β’ (π¦ = π€ β ((π + (1 / 2)) Β· π¦) = ((π + (1 / 2)) Β· π€)) |
10 | 9 | fveq2d 6892 |
. . . . . . . . . . . . . 14
β’ (π¦ = π€ β (sinβ((π + (1 / 2)) Β· π¦)) = (sinβ((π + (1 / 2)) Β· π€))) |
11 | | oveq1 7412 |
. . . . . . . . . . . . . . . 16
β’ (π¦ = π€ β (π¦ / 2) = (π€ / 2)) |
12 | 11 | fveq2d 6892 |
. . . . . . . . . . . . . . 15
β’ (π¦ = π€ β (sinβ(π¦ / 2)) = (sinβ(π€ / 2))) |
13 | 12 | oveq2d 7421 |
. . . . . . . . . . . . . 14
β’ (π¦ = π€ β ((2 Β· Ο) Β·
(sinβ(π¦ / 2))) = ((2
Β· Ο) Β· (sinβ(π€ / 2)))) |
14 | 10, 13 | oveq12d 7423 |
. . . . . . . . . . . . 13
β’ (π¦ = π€ β ((sinβ((π + (1 / 2)) Β· π¦)) / ((2 Β· Ο) Β·
(sinβ(π¦ / 2)))) =
((sinβ((π + (1 / 2))
Β· π€)) / ((2 Β·
Ο) Β· (sinβ(π€ / 2))))) |
15 | 8, 14 | ifbieq2d 4553 |
. . . . . . . . . . . 12
β’ (π¦ = π€ β if((π¦ mod (2 Β· Ο)) = 0, (((2 Β·
π) + 1) / (2 Β·
Ο)), ((sinβ((π +
(1 / 2)) Β· π¦)) / ((2
Β· Ο) Β· (sinβ(π¦ / 2))))) = if((π€ mod (2 Β· Ο)) = 0, (((2 Β·
π) + 1) / (2 Β·
Ο)), ((sinβ((π +
(1 / 2)) Β· π€)) / ((2
Β· Ο) Β· (sinβ(π€ / 2)))))) |
16 | 15 | cbvmptv 5260 |
. . . . . . . . . . 11
β’ (π¦ β β β¦
if((π¦ mod (2 Β·
Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)),
((sinβ((π + (1 / 2))
Β· π¦)) / ((2 Β·
Ο) Β· (sinβ(π¦ / 2)))))) = (π€ β β β¦ if((π€ mod (2 Β· Ο)) = 0,
(((2 Β· π) + 1) / (2
Β· Ο)), ((sinβ((π + (1 / 2)) Β· π€)) / ((2 Β· Ο) Β·
(sinβ(π€ /
2)))))) |
17 | 16 | mpteq2i 5252 |
. . . . . . . . . 10
β’ (π β β β¦ (π¦ β β β¦
if((π¦ mod (2 Β·
Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)),
((sinβ((π + (1 / 2))
Β· π¦)) / ((2 Β·
Ο) Β· (sinβ(π¦ / 2))))))) = (π β β β¦ (π€ β β β¦ if((π€ mod (2 Β· Ο)) = 0,
(((2 Β· π) + 1) / (2
Β· Ο)), ((sinβ((π + (1 / 2)) Β· π€)) / ((2 Β· Ο) Β·
(sinβ(π€ /
2))))))) |
18 | 1, 17 | eqtri 2760 |
. . . . . . . . 9
β’ π· = (π β β β¦ (π€ β β β¦ if((π€ mod (2 Β· Ο)) = 0,
(((2 Β· π) + 1) / (2
Β· Ο)), ((sinβ((π + (1 / 2)) Β· π€)) / ((2 Β· Ο) Β·
(sinβ(π€ /
2))))))) |
19 | | eqid 2732 |
. . . . . . . . 9
β’ (π¦ β Ο) = (π¦ β Ο) |
20 | | eqid 2732 |
. . . . . . . . 9
β’ (π¦ + Ο) = (π¦ + Ο) |
21 | | eqid 2732 |
. . . . . . . . 9
β’ (π€ β ((π¦ β Ο)(,)(π¦ + Ο)) β¦ ((sinβ((π + (1 / 2)) Β· π€)) / ((2 Β· Ο) Β·
(sinβ(π€ / 2))))) =
(π€ β ((π¦ β Ο)(,)(π¦ + Ο)) β¦
((sinβ((π + (1 / 2))
Β· π€)) / ((2 Β·
Ο) Β· (sinβ(π€ / 2))))) |
22 | | eqid 2732 |
. . . . . . . . 9
β’ (π€ β ((π¦ β Ο)(,)(π¦ + Ο)) β¦ ((2 Β· Ο) Β·
(sinβ(π€ / 2)))) =
(π€ β ((π¦ β Ο)(,)(π¦ + Ο)) β¦ ((2 Β·
Ο) Β· (sinβ(π€ / 2)))) |
23 | | simpll 765 |
. . . . . . . . 9
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β π β
β) |
24 | | simplr 767 |
. . . . . . . . 9
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β π¦ β
β) |
25 | | simpr 485 |
. . . . . . . . 9
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β (π¦ mod (2 Β·
Ο)) = 0) |
26 | 18, 19, 20, 21, 22, 23, 24, 25 | dirkercncflem3 44807 |
. . . . . . . 8
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β ((π·βπ)βπ¦) β ((π·βπ) limβ π¦)) |
27 | 3 | jctl 524 |
. . . . . . . . . 10
β’ (π¦ β β β (β
β β β§ π¦
β β)) |
28 | 27 | ad2antlr 725 |
. . . . . . . . 9
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β (β β β β§ π¦ β β)) |
29 | | eqid 2732 |
. . . . . . . . . 10
β’
(TopOpenββfld) =
(TopOpenββfld) |
30 | 29 | tgioo2 24310 |
. . . . . . . . . 10
β’
(topGenβran (,)) = ((TopOpenββfld)
βΎt β) |
31 | 29, 30 | cnplimc 25395 |
. . . . . . . . 9
β’ ((β
β β β§ π¦
β β) β ((π·βπ) β (((topGenβran (,)) CnP
(TopOpenββfld))βπ¦) β ((π·βπ):ββΆβ β§ ((π·βπ)βπ¦) β ((π·βπ) limβ π¦)))) |
32 | 28, 31 | syl 17 |
. . . . . . . 8
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β ((π·βπ) β (((topGenβran
(,)) CnP (TopOpenββfld))βπ¦) β ((π·βπ):ββΆβ β§ ((π·βπ)βπ¦) β ((π·βπ) limβ π¦)))) |
33 | 6, 26, 32 | mpbir2and 711 |
. . . . . . 7
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β (π·βπ) β (((topGenβran
(,)) CnP (TopOpenββfld))βπ¦)) |
34 | 29 | cnfldtop 24291 |
. . . . . . . . 9
β’
(TopOpenββfld) β Top |
35 | 34 | a1i 11 |
. . . . . . . 8
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β (TopOpenββfld) β Top) |
36 | 2 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β (π·βπ):ββΆβ) |
37 | 3 | a1i 11 |
. . . . . . . 8
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β β β β) |
38 | | retopon 24271 |
. . . . . . . . . 10
β’
(topGenβran (,)) β (TopOnββ) |
39 | 38 | toponunii 22409 |
. . . . . . . . 9
β’ β =
βͺ (topGenβran (,)) |
40 | 29 | cnfldtopon 24290 |
. . . . . . . . . 10
β’
(TopOpenββfld) β
(TopOnββ) |
41 | 40 | toponunii 22409 |
. . . . . . . . 9
β’ β =
βͺ
(TopOpenββfld) |
42 | 39, 41 | cnprest2 22785 |
. . . . . . . 8
β’
(((TopOpenββfld) β Top β§ (π·βπ):ββΆβ β§ β
β β) β ((π·βπ) β (((topGenβran (,)) CnP
(TopOpenββfld))βπ¦) β (π·βπ) β (((topGenβran (,)) CnP
((TopOpenββfld) βΎt
β))βπ¦))) |
43 | 35, 36, 37, 42 | syl3anc 1371 |
. . . . . . 7
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β ((π·βπ) β (((topGenβran
(,)) CnP (TopOpenββfld))βπ¦) β (π·βπ) β (((topGenβran (,)) CnP
((TopOpenββfld) βΎt
β))βπ¦))) |
44 | 33, 43 | mpbid 231 |
. . . . . 6
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β (π·βπ) β (((topGenβran
(,)) CnP ((TopOpenββfld) βΎt
β))βπ¦)) |
45 | 30 | eqcomi 2741 |
. . . . . . . . 9
β’
((TopOpenββfld) βΎt β) =
(topGenβran (,)) |
46 | 45 | a1i 11 |
. . . . . . . 8
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β ((TopOpenββfld) βΎt β) =
(topGenβran (,))) |
47 | 46 | oveq2d 7421 |
. . . . . . 7
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β ((topGenβran (,)) CnP ((TopOpenββfld)
βΎt β)) = ((topGenβran (,)) CnP (topGenβran
(,)))) |
48 | 47 | fveq1d 6890 |
. . . . . 6
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β (((topGenβran (,)) CnP ((TopOpenββfld)
βΎt β))βπ¦) = (((topGenβran (,)) CnP
(topGenβran (,)))βπ¦)) |
49 | 44, 48 | eleqtrd 2835 |
. . . . 5
β’ (((π β β β§ π¦ β β) β§ (π¦ mod (2 Β· Ο)) = 0)
β (π·βπ) β (((topGenβran
(,)) CnP (topGenβran (,)))βπ¦)) |
50 | | simpll 765 |
. . . . . 6
β’ (((π β β β§ π¦ β β) β§ Β¬
(π¦ mod (2 Β· Ο)) =
0) β π β
β) |
51 | | simplr 767 |
. . . . . 6
β’ (((π β β β§ π¦ β β) β§ Β¬
(π¦ mod (2 Β· Ο)) =
0) β π¦ β
β) |
52 | | neqne 2948 |
. . . . . . 7
β’ (Β¬
(π¦ mod (2 Β· Ο)) =
0 β (π¦ mod (2 Β·
Ο)) β 0) |
53 | 52 | adantl 482 |
. . . . . 6
β’ (((π β β β§ π¦ β β) β§ Β¬
(π¦ mod (2 Β· Ο)) =
0) β (π¦ mod (2
Β· Ο)) β 0) |
54 | | eqid 2732 |
. . . . . 6
β’
(ββ(π¦ /
(2 Β· Ο))) = (ββ(π¦ / (2 Β· Ο))) |
55 | | eqid 2732 |
. . . . . 6
β’
((ββ(π¦ /
(2 Β· Ο))) + 1) = ((ββ(π¦ / (2 Β· Ο))) + 1) |
56 | | eqid 2732 |
. . . . . 6
β’
((ββ(π¦ /
(2 Β· Ο))) Β· (2 Β· Ο)) = ((ββ(π¦ / (2 Β· Ο))) Β·
(2 Β· Ο)) |
57 | | eqid 2732 |
. . . . . 6
β’
(((ββ(π¦
/ (2 Β· Ο))) + 1) Β· (2 Β· Ο)) =
(((ββ(π¦ / (2
Β· Ο))) + 1) Β· (2 Β· Ο)) |
58 | 18, 50, 51, 53, 54, 55, 56, 57 | dirkercncflem4 44808 |
. . . . 5
β’ (((π β β β§ π¦ β β) β§ Β¬
(π¦ mod (2 Β· Ο)) =
0) β (π·βπ) β (((topGenβran
(,)) CnP (topGenβran (,)))βπ¦)) |
59 | 49, 58 | pm2.61dan 811 |
. . . 4
β’ ((π β β β§ π¦ β β) β (π·βπ) β (((topGenβran (,)) CnP
(topGenβran (,)))βπ¦)) |
60 | 59 | ralrimiva 3146 |
. . 3
β’ (π β β β
βπ¦ β β
(π·βπ) β (((topGenβran (,)) CnP
(topGenβran (,)))βπ¦)) |
61 | | cncnp 22775 |
. . . 4
β’
(((topGenβran (,)) β (TopOnββ) β§
(topGenβran (,)) β (TopOnββ)) β ((π·βπ) β ((topGenβran (,)) Cn
(topGenβran (,))) β ((π·βπ):ββΆβ β§ βπ¦ β β (π·βπ) β (((topGenβran (,)) CnP
(topGenβran (,)))βπ¦)))) |
62 | 38, 38, 61 | mp2an 690 |
. . 3
β’ ((π·βπ) β ((topGenβran (,)) Cn
(topGenβran (,))) β ((π·βπ):ββΆβ β§ βπ¦ β β (π·βπ) β (((topGenβran (,)) CnP
(topGenβran (,)))βπ¦))) |
63 | 2, 60, 62 | sylanbrc 583 |
. 2
β’ (π β β β (π·βπ) β ((topGenβran (,)) Cn
(topGenβran (,)))) |
64 | 29, 30, 30 | cncfcn 24417 |
. . 3
β’ ((β
β β β§ β β β) β (ββcnββ) = ((topGenβran (,)) Cn
(topGenβran (,)))) |
65 | 3, 3, 64 | mp2an 690 |
. 2
β’
(ββcnββ) =
((topGenβran (,)) Cn (topGenβran (,))) |
66 | 63, 65 | eleqtrrdi 2844 |
1
β’ (π β β β (π·βπ) β (ββcnββ)) |