Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onmcl Structured version   Visualization version   GIF version

Theorem onmcl 43327
Description: If an ordinal is less than a power of omega, the product with a natural number is also less than that power of omega. (Contributed by RP, 19-Feb-2025.)
Assertion
Ref Expression
onmcl ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))

Proof of Theorem onmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7397 . . . . 5 (𝐴 = ∅ → (𝐴 ·o 𝑁) = (∅ ·o 𝑁))
2 simp3 1138 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → 𝑁 ∈ ω)
3 nnon 7851 . . . . . 6 (𝑁 ∈ ω → 𝑁 ∈ On)
4 om0r 8506 . . . . . 6 (𝑁 ∈ On → (∅ ·o 𝑁) = ∅)
52, 3, 43syl 18 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (∅ ·o 𝑁) = ∅)
61, 5sylan9eqr 2787 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → (𝐴 ·o 𝑁) = ∅)
7 simpl2 1193 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → 𝐵 ∈ On)
8 omelon 9606 . . . . . 6 ω ∈ On
97, 8jctil 519 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → (ω ∈ On ∧ 𝐵 ∈ On))
10 peano1 7868 . . . . 5 ∅ ∈ ω
11 oen0 8553 . . . . 5 (((ω ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐵))
129, 10, 11sylancl 586 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → ∅ ∈ (ω ↑o 𝐵))
136, 12eqeltrd 2829 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵))
1413a1d 25 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
152adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → 𝑁 ∈ ω)
16 simp1 1136 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → 𝐴 ∈ On)
1716anim1i 615 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
18 ondif1 8468 . . . 4 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
1917, 18sylibr 234 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ (On ∖ 1o))
20 simpl2 1193 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → 𝐵 ∈ On)
21 oveq2 7398 . . . . . . 7 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
2221eleq1d 2814 . . . . . 6 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵) ↔ (𝐴 ·o ∅) ∈ (ω ↑o 𝐵)))
2322imbi2d 340 . . . . 5 (𝑥 = ∅ → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵)) ↔ (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o ∅) ∈ (ω ↑o 𝐵))))
24 oveq2 7398 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
2524eleq1d 2814 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵) ↔ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)))
2625imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵)) ↔ (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵))))
27 oveq2 7398 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
2827eleq1d 2814 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵) ↔ (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵)))
2928imbi2d 340 . . . . 5 (𝑥 = suc 𝑦 → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵)) ↔ (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵))))
30 oveq2 7398 . . . . . . 7 (𝑥 = 𝑁 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑁))
3130eleq1d 2814 . . . . . 6 (𝑥 = 𝑁 → ((𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵) ↔ (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
3231imbi2d 340 . . . . 5 (𝑥 = 𝑁 → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵)) ↔ (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵))))
33 eldifi 4097 . . . . . . . . 9 (𝐴 ∈ (On ∖ 1o) → 𝐴 ∈ On)
34 om0 8484 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
3533, 34syl 17 . . . . . . . 8 (𝐴 ∈ (On ∖ 1o) → (𝐴 ·o ∅) = ∅)
3635adantr 480 . . . . . . 7 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → (𝐴 ·o ∅) = ∅)
378jctl 523 . . . . . . . . 9 (𝐵 ∈ On → (ω ∈ On ∧ 𝐵 ∈ On))
3837, 10, 11sylancl 586 . . . . . . . 8 (𝐵 ∈ On → ∅ ∈ (ω ↑o 𝐵))
3938adantl 481 . . . . . . 7 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → ∅ ∈ (ω ↑o 𝐵))
4036, 39eqeltrd 2829 . . . . . 6 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → (𝐴 ·o ∅) ∈ (ω ↑o 𝐵))
4140adantr 480 . . . . 5 (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o ∅) ∈ (ω ↑o 𝐵))
4233adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
4342ad2antrl 728 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) → 𝐴 ∈ On)
44 simpll 766 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → 𝑦 ∈ ω)
45 onmsuc 8496 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
4643, 44, 45syl2an2r 685 . . . . . . . 8 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
47 simpr 484 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵))
48 simplrr 777 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → 𝐴 ∈ (ω ↑o 𝐵))
49 eqid 2730 . . . . . . . . . . . . . 14 (ω ↑o 𝐵) = (ω ↑o 𝐵)
5049jctl 523 . . . . . . . . . . . . 13 (𝐵 ∈ On → ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On))
5150olcd 874 . . . . . . . . . . . 12 (𝐵 ∈ On → ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On)))
5251adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On)))
5352ad2antrl 728 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) → ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On)))
5453adantr 480 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On)))
55 oacl2g 43326 . . . . . . . . 9 ((((𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵) ∧ 𝐴 ∈ (ω ↑o 𝐵)) ∧ ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On))) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ (ω ↑o 𝐵))
5647, 48, 54, 55syl21anc 837 . . . . . . . 8 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ (ω ↑o 𝐵))
5746, 56eqeltrd 2829 . . . . . . 7 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵))
5857exp31 419 . . . . . 6 (𝑦 ∈ ω → (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → ((𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵) → (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵))))
5958a2d 29 . . . . 5 (𝑦 ∈ ω → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵))))
6023, 26, 29, 32, 41, 59finds 7875 . . . 4 (𝑁 ∈ ω → (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
6160expdimp 452 . . 3 ((𝑁 ∈ ω ∧ (𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On)) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
6215, 19, 20, 61syl12anc 836 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
63 on0eqel 6461 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
6416, 63syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
6514, 62, 64mpjaodan 960 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cdif 3914  c0 4299  Oncon0 6335  suc csuc 6337  (class class class)co 7390  ωcom 7845  1oc1o 8430   +o coa 8434   ·o comu 8435  o coe 8436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-oexp 8443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator