Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onmcl Structured version   Visualization version   GIF version

Theorem onmcl 43320
Description: If an ordinal is less than a power of omega, the product with a natural number is also less than that power of omega. (Contributed by RP, 19-Feb-2025.)
Assertion
Ref Expression
onmcl ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))

Proof of Theorem onmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7437 . . . . 5 (𝐴 = ∅ → (𝐴 ·o 𝑁) = (∅ ·o 𝑁))
2 simp3 1137 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → 𝑁 ∈ ω)
3 nnon 7892 . . . . . 6 (𝑁 ∈ ω → 𝑁 ∈ On)
4 om0r 8575 . . . . . 6 (𝑁 ∈ On → (∅ ·o 𝑁) = ∅)
52, 3, 43syl 18 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (∅ ·o 𝑁) = ∅)
61, 5sylan9eqr 2796 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → (𝐴 ·o 𝑁) = ∅)
7 simpl2 1191 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → 𝐵 ∈ On)
8 omelon 9683 . . . . . 6 ω ∈ On
97, 8jctil 519 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → (ω ∈ On ∧ 𝐵 ∈ On))
10 peano1 7910 . . . . 5 ∅ ∈ ω
11 oen0 8622 . . . . 5 (((ω ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐵))
129, 10, 11sylancl 586 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → ∅ ∈ (ω ↑o 𝐵))
136, 12eqeltrd 2838 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵))
1413a1d 25 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
152adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → 𝑁 ∈ ω)
16 simp1 1135 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → 𝐴 ∈ On)
1716anim1i 615 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
18 ondif1 8537 . . . 4 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
1917, 18sylibr 234 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ (On ∖ 1o))
20 simpl2 1191 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → 𝐵 ∈ On)
21 oveq2 7438 . . . . . . 7 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
2221eleq1d 2823 . . . . . 6 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵) ↔ (𝐴 ·o ∅) ∈ (ω ↑o 𝐵)))
2322imbi2d 340 . . . . 5 (𝑥 = ∅ → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵)) ↔ (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o ∅) ∈ (ω ↑o 𝐵))))
24 oveq2 7438 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
2524eleq1d 2823 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵) ↔ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)))
2625imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵)) ↔ (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵))))
27 oveq2 7438 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
2827eleq1d 2823 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵) ↔ (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵)))
2928imbi2d 340 . . . . 5 (𝑥 = suc 𝑦 → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵)) ↔ (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵))))
30 oveq2 7438 . . . . . . 7 (𝑥 = 𝑁 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑁))
3130eleq1d 2823 . . . . . 6 (𝑥 = 𝑁 → ((𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵) ↔ (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
3231imbi2d 340 . . . . 5 (𝑥 = 𝑁 → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵)) ↔ (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵))))
33 eldifi 4140 . . . . . . . . 9 (𝐴 ∈ (On ∖ 1o) → 𝐴 ∈ On)
34 om0 8553 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
3533, 34syl 17 . . . . . . . 8 (𝐴 ∈ (On ∖ 1o) → (𝐴 ·o ∅) = ∅)
3635adantr 480 . . . . . . 7 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → (𝐴 ·o ∅) = ∅)
378jctl 523 . . . . . . . . 9 (𝐵 ∈ On → (ω ∈ On ∧ 𝐵 ∈ On))
3837, 10, 11sylancl 586 . . . . . . . 8 (𝐵 ∈ On → ∅ ∈ (ω ↑o 𝐵))
3938adantl 481 . . . . . . 7 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → ∅ ∈ (ω ↑o 𝐵))
4036, 39eqeltrd 2838 . . . . . 6 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → (𝐴 ·o ∅) ∈ (ω ↑o 𝐵))
4140adantr 480 . . . . 5 (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o ∅) ∈ (ω ↑o 𝐵))
4233adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
4342ad2antrl 728 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) → 𝐴 ∈ On)
44 simpll 767 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → 𝑦 ∈ ω)
45 onmsuc 8565 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
4643, 44, 45syl2an2r 685 . . . . . . . 8 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
47 simpr 484 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵))
48 simplrr 778 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → 𝐴 ∈ (ω ↑o 𝐵))
49 eqid 2734 . . . . . . . . . . . . . 14 (ω ↑o 𝐵) = (ω ↑o 𝐵)
5049jctl 523 . . . . . . . . . . . . 13 (𝐵 ∈ On → ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On))
5150olcd 874 . . . . . . . . . . . 12 (𝐵 ∈ On → ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On)))
5251adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On)))
5352ad2antrl 728 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) → ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On)))
5453adantr 480 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On)))
55 oacl2g 43319 . . . . . . . . 9 ((((𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵) ∧ 𝐴 ∈ (ω ↑o 𝐵)) ∧ ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On))) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ (ω ↑o 𝐵))
5647, 48, 54, 55syl21anc 838 . . . . . . . 8 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ (ω ↑o 𝐵))
5746, 56eqeltrd 2838 . . . . . . 7 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵))
5857exp31 419 . . . . . 6 (𝑦 ∈ ω → (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → ((𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵) → (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵))))
5958a2d 29 . . . . 5 (𝑦 ∈ ω → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵))))
6023, 26, 29, 32, 41, 59finds 7918 . . . 4 (𝑁 ∈ ω → (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
6160expdimp 452 . . 3 ((𝑁 ∈ ω ∧ (𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On)) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
6215, 19, 20, 61syl12anc 837 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
63 on0eqel 6509 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
6416, 63syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
6514, 62, 64mpjaodan 960 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  cdif 3959  c0 4338  Oncon0 6385  suc csuc 6387  (class class class)co 7430  ωcom 7886  1oc1o 8497   +o coa 8501   ·o comu 8502  o coe 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753  ax-inf2 9678
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-oexp 8510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator