Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onmcl Structured version   Visualization version   GIF version

Theorem onmcl 43363
Description: If an ordinal is less than a power of omega, the product with a natural number is also less than that power of omega. (Contributed by RP, 19-Feb-2025.)
Assertion
Ref Expression
onmcl ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))

Proof of Theorem onmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7353 . . . . 5 (𝐴 = ∅ → (𝐴 ·o 𝑁) = (∅ ·o 𝑁))
2 simp3 1138 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → 𝑁 ∈ ω)
3 nnon 7802 . . . . . 6 (𝑁 ∈ ω → 𝑁 ∈ On)
4 om0r 8454 . . . . . 6 (𝑁 ∈ On → (∅ ·o 𝑁) = ∅)
52, 3, 43syl 18 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (∅ ·o 𝑁) = ∅)
61, 5sylan9eqr 2788 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → (𝐴 ·o 𝑁) = ∅)
7 simpl2 1193 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → 𝐵 ∈ On)
8 omelon 9536 . . . . . 6 ω ∈ On
97, 8jctil 519 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → (ω ∈ On ∧ 𝐵 ∈ On))
10 peano1 7819 . . . . 5 ∅ ∈ ω
11 oen0 8501 . . . . 5 (((ω ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐵))
129, 10, 11sylancl 586 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → ∅ ∈ (ω ↑o 𝐵))
136, 12eqeltrd 2831 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵))
1413a1d 25 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ 𝐴 = ∅) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
152adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → 𝑁 ∈ ω)
16 simp1 1136 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → 𝐴 ∈ On)
1716anim1i 615 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
18 ondif1 8416 . . . 4 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
1917, 18sylibr 234 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ (On ∖ 1o))
20 simpl2 1193 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → 𝐵 ∈ On)
21 oveq2 7354 . . . . . . 7 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
2221eleq1d 2816 . . . . . 6 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵) ↔ (𝐴 ·o ∅) ∈ (ω ↑o 𝐵)))
2322imbi2d 340 . . . . 5 (𝑥 = ∅ → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵)) ↔ (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o ∅) ∈ (ω ↑o 𝐵))))
24 oveq2 7354 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
2524eleq1d 2816 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵) ↔ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)))
2625imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵)) ↔ (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵))))
27 oveq2 7354 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
2827eleq1d 2816 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵) ↔ (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵)))
2928imbi2d 340 . . . . 5 (𝑥 = suc 𝑦 → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵)) ↔ (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵))))
30 oveq2 7354 . . . . . . 7 (𝑥 = 𝑁 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑁))
3130eleq1d 2816 . . . . . 6 (𝑥 = 𝑁 → ((𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵) ↔ (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
3231imbi2d 340 . . . . 5 (𝑥 = 𝑁 → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑥) ∈ (ω ↑o 𝐵)) ↔ (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵))))
33 eldifi 4081 . . . . . . . . 9 (𝐴 ∈ (On ∖ 1o) → 𝐴 ∈ On)
34 om0 8432 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
3533, 34syl 17 . . . . . . . 8 (𝐴 ∈ (On ∖ 1o) → (𝐴 ·o ∅) = ∅)
3635adantr 480 . . . . . . 7 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → (𝐴 ·o ∅) = ∅)
378jctl 523 . . . . . . . . 9 (𝐵 ∈ On → (ω ∈ On ∧ 𝐵 ∈ On))
3837, 10, 11sylancl 586 . . . . . . . 8 (𝐵 ∈ On → ∅ ∈ (ω ↑o 𝐵))
3938adantl 481 . . . . . . 7 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → ∅ ∈ (ω ↑o 𝐵))
4036, 39eqeltrd 2831 . . . . . 6 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → (𝐴 ·o ∅) ∈ (ω ↑o 𝐵))
4140adantr 480 . . . . 5 (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o ∅) ∈ (ω ↑o 𝐵))
4233adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
4342ad2antrl 728 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) → 𝐴 ∈ On)
44 simpll 766 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → 𝑦 ∈ ω)
45 onmsuc 8444 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
4643, 44, 45syl2an2r 685 . . . . . . . 8 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
47 simpr 484 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵))
48 simplrr 777 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → 𝐴 ∈ (ω ↑o 𝐵))
49 eqid 2731 . . . . . . . . . . . . . 14 (ω ↑o 𝐵) = (ω ↑o 𝐵)
5049jctl 523 . . . . . . . . . . . . 13 (𝐵 ∈ On → ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On))
5150olcd 874 . . . . . . . . . . . 12 (𝐵 ∈ On → ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On)))
5251adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) → ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On)))
5352ad2antrl 728 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) → ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On)))
5453adantr 480 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On)))
55 oacl2g 43362 . . . . . . . . 9 ((((𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵) ∧ 𝐴 ∈ (ω ↑o 𝐵)) ∧ ((ω ↑o 𝐵) = ∅ ∨ ((ω ↑o 𝐵) = (ω ↑o 𝐵) ∧ 𝐵 ∈ On))) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ (ω ↑o 𝐵))
5647, 48, 54, 55syl21anc 837 . . . . . . . 8 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ (ω ↑o 𝐵))
5746, 56eqeltrd 2831 . . . . . . 7 (((𝑦 ∈ ω ∧ ((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵))) ∧ (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵))
5857exp31 419 . . . . . 6 (𝑦 ∈ ω → (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → ((𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵) → (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵))))
5958a2d 29 . . . . 5 (𝑦 ∈ ω → ((((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑦) ∈ (ω ↑o 𝐵)) → (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o suc 𝑦) ∈ (ω ↑o 𝐵))))
6023, 26, 29, 32, 41, 59finds 7826 . . . 4 (𝑁 ∈ ω → (((𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ (ω ↑o 𝐵)) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
6160expdimp 452 . . 3 ((𝑁 ∈ ω ∧ (𝐴 ∈ (On ∖ 1o) ∧ 𝐵 ∈ On)) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
6215, 19, 20, 61syl12anc 836 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
63 on0eqel 6431 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
6416, 63syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
6514, 62, 64mpjaodan 960 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  cdif 3899  c0 4283  Oncon0 6306  suc csuc 6308  (class class class)co 7346  ωcom 7796  1oc1o 8378   +o coa 8382   ·o comu 8383  o coe 8384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-oexp 8391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator