MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin2 Structured version   Visualization version   GIF version

Theorem swrdccatin2 14701
Description: The subword of a concatenation of two words within the second of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Revised by Alexander van der Vekens, 27-May-2018.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
swrdccatin2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))

Proof of Theorem swrdccatin2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 swrdccatin2.l . . . . . . . 8 𝐿 = (♯‘𝐴)
2 oveq1 7397 . . . . . . . . . 10 (𝐿 = (♯‘𝐴) → (𝐿...𝑁) = ((♯‘𝐴)...𝑁))
32eleq2d 2815 . . . . . . . . 9 (𝐿 = (♯‘𝐴) → (𝑀 ∈ (𝐿...𝑁) ↔ 𝑀 ∈ ((♯‘𝐴)...𝑁)))
4 id 22 . . . . . . . . . . 11 (𝐿 = (♯‘𝐴) → 𝐿 = (♯‘𝐴))
5 oveq1 7397 . . . . . . . . . . 11 (𝐿 = (♯‘𝐴) → (𝐿 + (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
64, 5oveq12d 7408 . . . . . . . . . 10 (𝐿 = (♯‘𝐴) → (𝐿...(𝐿 + (♯‘𝐵))) = ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))
76eleq2d 2815 . . . . . . . . 9 (𝐿 = (♯‘𝐴) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))
83, 7anbi12d 632 . . . . . . . 8 (𝐿 = (♯‘𝐴) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) ↔ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))))
91, 8ax-mp 5 . . . . . . 7 ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) ↔ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))
10 lencl 14505 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
11 elnn0uz 12845 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ0 ↔ (♯‘𝐴) ∈ (ℤ‘0))
12 fzss1 13531 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ (ℤ‘0) → ((♯‘𝐴)...𝑁) ⊆ (0...𝑁))
1311, 12sylbi 217 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴)...𝑁) ⊆ (0...𝑁))
1413sseld 3948 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ0 → (𝑀 ∈ ((♯‘𝐴)...𝑁) → 𝑀 ∈ (0...𝑁)))
15 fzss1 13531 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ (ℤ‘0) → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ⊆ (0...((♯‘𝐴) + (♯‘𝐵))))
1611, 15sylbi 217 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ⊆ (0...((♯‘𝐴) + (♯‘𝐵))))
1716sseld 3948 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ0 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) → 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))))
1814, 17anim12d 609 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ0 → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))))
1910, 18syl 17 . . . . . . . 8 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))))
2019adantr 480 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))))
219, 20biimtrid 242 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))))
2221imp 406 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))))
23 swrdccatfn 14696 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
2422, 23syldan 591 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
25 fzmmmeqm 13525 . . . . . . 7 (𝑀 ∈ (𝐿...𝑁) → ((𝑁𝐿) − (𝑀𝐿)) = (𝑁𝑀))
2625oveq2d 7406 . . . . . 6 (𝑀 ∈ (𝐿...𝑁) → (0..^((𝑁𝐿) − (𝑀𝐿))) = (0..^(𝑁𝑀)))
2726fneq2d 6615 . . . . 5 (𝑀 ∈ (𝐿...𝑁) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^((𝑁𝐿) − (𝑀𝐿))) ↔ ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀))))
2827ad2antrl 728 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^((𝑁𝐿) − (𝑀𝐿))) ↔ ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀))))
2924, 28mpbird 257 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^((𝑁𝐿) − (𝑀𝐿))))
30 simplr 768 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐵 ∈ Word 𝑉)
31 elfzmlbm 13606 . . . . 5 (𝑀 ∈ (𝐿...𝑁) → (𝑀𝐿) ∈ (0...(𝑁𝐿)))
3231ad2antrl 728 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑀𝐿) ∈ (0...(𝑁𝐿)))
33 lencl 14505 . . . . . . . 8 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
3433nn0zd 12562 . . . . . . 7 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℤ)
3534adantl 481 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘𝐵) ∈ ℤ)
36 elfzmlbp 13607 . . . . . 6 (((♯‘𝐵) ∈ ℤ ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
3735, 36sylan 580 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
3837adantrl 716 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
39 swrdvalfn 14623 . . . 4 ((𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ (0...(𝑁𝐿)) ∧ (𝑁𝐿) ∈ (0...(♯‘𝐵))) → (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) Fn (0..^((𝑁𝐿) − (𝑀𝐿))))
4030, 32, 38, 39syl3anc 1373 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) Fn (0..^((𝑁𝐿) − (𝑀𝐿))))
41 simpll 766 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
42 elfzelz 13492 . . . . . . . . . 10 (𝑀 ∈ (𝐿...𝑁) → 𝑀 ∈ ℤ)
43 zaddcl 12580 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
4443expcom 413 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑘 + 𝑀) ∈ ℤ))
4542, 44syl 17 . . . . . . . . 9 (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ ℤ → (𝑘 + 𝑀) ∈ ℤ))
4645ad2antrl 728 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑘 ∈ ℤ → (𝑘 + 𝑀) ∈ ℤ))
47 elfzoelz 13627 . . . . . . . 8 (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) → 𝑘 ∈ ℤ)
4846, 47impel 505 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (𝑘 + 𝑀) ∈ ℤ)
49 df-3an 1088 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ ℤ) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑘 + 𝑀) ∈ ℤ))
5041, 48, 49sylanbrc 583 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ ℤ))
51 ccatsymb 14554 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ ℤ) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = if((𝑘 + 𝑀) < (♯‘𝐴), (𝐴‘(𝑘 + 𝑀)), (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴)))))
5250, 51syl 17 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = if((𝑘 + 𝑀) < (♯‘𝐴), (𝐴‘(𝑘 + 𝑀)), (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴)))))
53 elfz2 13482 . . . . . . . . 9 (𝑀 ∈ (𝐿...𝑁) ↔ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)))
54 zre 12540 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
55 zre 12540 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5654, 55anim12i 613 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ))
57 elnn0z 12549 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
58 zre 12540 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
59 0re 11183 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ ℝ
6059jctl 523 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ ℝ → (0 ∈ ℝ ∧ 𝐿 ∈ ℝ))
6160ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (0 ∈ ℝ ∧ 𝐿 ∈ ℝ))
62 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ))
6362adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ))
64 le2add 11667 . . . . . . . . . . . . . . . . . . . . . . . 24 (((0 ∈ ℝ ∧ 𝐿 ∈ ℝ) ∧ (𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 ≤ 𝑘𝐿𝑀) → (0 + 𝐿) ≤ (𝑘 + 𝑀)))
6561, 63, 64syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 ≤ 𝑘𝐿𝑀) → (0 + 𝐿) ≤ (𝑘 + 𝑀)))
66 recn 11165 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐿 ∈ ℝ → 𝐿 ∈ ℂ)
6766addlidd 11382 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ ℝ → (0 + 𝐿) = 𝐿)
6867ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (0 + 𝐿) = 𝐿)
6968breq1d 5120 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 + 𝐿) ≤ (𝑘 + 𝑀) ↔ 𝐿 ≤ (𝑘 + 𝑀)))
7065, 69sylibd 239 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 ≤ 𝑘𝐿𝑀) → 𝐿 ≤ (𝑘 + 𝑀)))
71 simprl 770 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → 𝐿 ∈ ℝ)
72 readdcl 11158 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑘 + 𝑀) ∈ ℝ)
7372adantrl 716 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝑘 + 𝑀) ∈ ℝ)
7471, 73lenltd 11327 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝐿 ≤ (𝑘 + 𝑀) ↔ ¬ (𝑘 + 𝑀) < 𝐿))
7570, 74sylibd 239 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 ≤ 𝑘𝐿𝑀) → ¬ (𝑘 + 𝑀) < 𝐿))
7675expd 415 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (0 ≤ 𝑘 → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿)))
7776com12 32 . . . . . . . . . . . . . . . . . . 19 (0 ≤ 𝑘 → ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿)))
7877expd 415 . . . . . . . . . . . . . . . . . 18 (0 ≤ 𝑘 → (𝑘 ∈ ℝ → ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿))))
7958, 78mpan9 506 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ 0 ≤ 𝑘) → ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿)))
8057, 79sylbi 217 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿)))
8156, 80mpan9 506 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿))
821breq2i 5118 . . . . . . . . . . . . . . . 16 ((𝑘 + 𝑀) < 𝐿 ↔ (𝑘 + 𝑀) < (♯‘𝐴))
8382notbii 320 . . . . . . . . . . . . . . 15 (¬ (𝑘 + 𝑀) < 𝐿 ↔ ¬ (𝑘 + 𝑀) < (♯‘𝐴))
8481, 83imbitrdi 251 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < (♯‘𝐴)))
8584ex 412 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ ℕ0 → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < (♯‘𝐴))))
8685com23 86 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀 → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (♯‘𝐴))))
87863adant2 1131 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀 → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (♯‘𝐴))))
8887imp 406 . . . . . . . . . 10 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝐿𝑀) → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (♯‘𝐴)))
8988adantrr 717 . . . . . . . . 9 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)) → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (♯‘𝐴)))
9053, 89sylbi 217 . . . . . . . 8 (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (♯‘𝐴)))
9190ad2antrl 728 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (♯‘𝐴)))
92 elfzonn0 13675 . . . . . . 7 (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) → 𝑘 ∈ ℕ0)
9391, 92impel 505 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ¬ (𝑘 + 𝑀) < (♯‘𝐴))
9493iffalsed 4502 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → if((𝑘 + 𝑀) < (♯‘𝐴), (𝐴‘(𝑘 + 𝑀)), (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴)))) = (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴))))
95 zcn 12541 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
9695adantl 481 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
97 zcn 12541 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
9897ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℂ)
99 zcn 12541 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
10099ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝐿 ∈ ℂ)
10196, 98, 100addsubassd 11560 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑀) − 𝐿) = (𝑘 + (𝑀𝐿)))
102 oveq2 7398 . . . . . . . . . . . . . . 15 (𝐿 = (♯‘𝐴) → ((𝑘 + 𝑀) − 𝐿) = ((𝑘 + 𝑀) − (♯‘𝐴)))
103102eqeq1d 2732 . . . . . . . . . . . . . 14 (𝐿 = (♯‘𝐴) → (((𝑘 + 𝑀) − 𝐿) = (𝑘 + (𝑀𝐿)) ↔ ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿))))
104101, 103imbitrid 244 . . . . . . . . . . . . 13 (𝐿 = (♯‘𝐴) → (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿))))
1051, 104ax-mp 5 . . . . . . . . . . . 12 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿)))
106105ex 412 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿))))
1071063adant2 1131 . . . . . . . . . 10 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿))))
108107adantr 480 . . . . . . . . 9 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿))))
10953, 108sylbi 217 . . . . . . . 8 (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿))))
110109ad2antrl 728 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿))))
111110, 47impel 505 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿)))
112111fveq2d 6865 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴))) = (𝐵‘(𝑘 + (𝑀𝐿))))
11352, 94, 1123eqtrd 2769 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = (𝐵‘(𝑘 + (𝑀𝐿))))
114 ccatcl 14546 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
115114adantr 480 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
11611biimpi 216 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ (ℤ‘0))
1171, 116eqeltrid 2833 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ (ℤ‘0))
118 fzss1 13531 . . . . . . . . 9 (𝐿 ∈ (ℤ‘0) → (𝐿...𝑁) ⊆ (0...𝑁))
11910, 117, 1183syl 18 . . . . . . . 8 (𝐴 ∈ Word 𝑉 → (𝐿...𝑁) ⊆ (0...𝑁))
120119sselda 3949 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝑀 ∈ (𝐿...𝑁)) → 𝑀 ∈ (0...𝑁))
121120ad2ant2r 747 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ (0...𝑁))
1221, 7ax-mp 5 . . . . . . . . 9 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))
12310, 116, 153syl 18 . . . . . . . . . . . . . 14 (𝐴 ∈ Word 𝑉 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ⊆ (0...((♯‘𝐴) + (♯‘𝐵))))
124123adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ⊆ (0...((♯‘𝐴) + (♯‘𝐵))))
125124sseld 3948 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) → 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))))
126125impcom 407 . . . . . . . . . . 11 ((𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))
127 ccatlen 14547 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
128127oveq2d 7406 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (0...(♯‘(𝐴 ++ 𝐵))) = (0...((♯‘𝐴) + (♯‘𝐵))))
129128eleq2d 2815 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))) ↔ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))))
130129adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → (𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))) ↔ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))))
131126, 130mpbird 257 . . . . . . . . . 10 ((𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
132131ex 412 . . . . . . . . 9 (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
133122, 132sylbi 217 . . . . . . . 8 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
134133impcom 407 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
135134adantrl 716 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
136115, 121, 1353jca 1128 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
13726eleq2d 2815 . . . . . . 7 (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) ↔ 𝑘 ∈ (0..^(𝑁𝑀))))
138137ad2antrl 728 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) ↔ 𝑘 ∈ (0..^(𝑁𝑀))))
139138biimpa 476 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → 𝑘 ∈ (0..^(𝑁𝑀)))
140 swrdfv 14620 . . . . 5 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)))
141136, 139, 140syl2an2r 685 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)))
14234, 36sylan 580 . . . . . . 7 ((𝐵 ∈ Word 𝑉𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
143142ad2ant2l 746 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
14430, 32, 1433jca 1128 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ (0...(𝑁𝐿)) ∧ (𝑁𝐿) ∈ (0...(♯‘𝐵))))
145 swrdfv 14620 . . . . 5 (((𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ (0...(𝑁𝐿)) ∧ (𝑁𝐿) ∈ (0...(♯‘𝐵))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)‘𝑘) = (𝐵‘(𝑘 + (𝑀𝐿))))
146144, 145sylan 580 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)‘𝑘) = (𝐵‘(𝑘 + (𝑀𝐿))))
147113, 141, 1463eqtr4d 2775 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)‘𝑘))
14829, 40, 147eqfnfvd 7009 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
149148ex 412 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917  ifcif 4491  cop 4598   class class class wbr 5110   Fn wfn 6509  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   + caddc 11078   < clt 11215  cle 11216  cmin 11412  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485   ++ cconcat 14542   substr csubstr 14612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-substr 14613
This theorem is referenced by:  pfxccat3  14706  swrdccatin2d  14716
  Copyright terms: Public domain W3C validator