Step | Hyp | Ref
| Expression |
1 | | swrdccatin2.l |
. . . . . . . 8
⊢ 𝐿 = (♯‘𝐴) |
2 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝐿 = (♯‘𝐴) → (𝐿...𝑁) = ((♯‘𝐴)...𝑁)) |
3 | 2 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝐿 = (♯‘𝐴) → (𝑀 ∈ (𝐿...𝑁) ↔ 𝑀 ∈ ((♯‘𝐴)...𝑁))) |
4 | | id 22 |
. . . . . . . . . . 11
⊢ (𝐿 = (♯‘𝐴) → 𝐿 = (♯‘𝐴)) |
5 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝐿 = (♯‘𝐴) → (𝐿 + (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
6 | 4, 5 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝐿 = (♯‘𝐴) → (𝐿...(𝐿 + (♯‘𝐵))) = ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) |
7 | 6 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝐿 = (♯‘𝐴) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) |
8 | 3, 7 | anbi12d 630 |
. . . . . . . 8
⊢ (𝐿 = (♯‘𝐴) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) ↔ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))) |
9 | 1, 8 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) ↔ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) |
10 | | lencl 14164 |
. . . . . . . . 9
⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈
ℕ0) |
11 | | elnn0uz 12552 |
. . . . . . . . . . . 12
⊢
((♯‘𝐴)
∈ ℕ0 ↔ (♯‘𝐴) ∈
(ℤ≥‘0)) |
12 | | fzss1 13224 |
. . . . . . . . . . . 12
⊢
((♯‘𝐴)
∈ (ℤ≥‘0) → ((♯‘𝐴)...𝑁) ⊆ (0...𝑁)) |
13 | 11, 12 | sylbi 216 |
. . . . . . . . . . 11
⊢
((♯‘𝐴)
∈ ℕ0 → ((♯‘𝐴)...𝑁) ⊆ (0...𝑁)) |
14 | 13 | sseld 3916 |
. . . . . . . . . 10
⊢
((♯‘𝐴)
∈ ℕ0 → (𝑀 ∈ ((♯‘𝐴)...𝑁) → 𝑀 ∈ (0...𝑁))) |
15 | | fzss1 13224 |
. . . . . . . . . . . 12
⊢
((♯‘𝐴)
∈ (ℤ≥‘0) → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ⊆
(0...((♯‘𝐴) +
(♯‘𝐵)))) |
16 | 11, 15 | sylbi 216 |
. . . . . . . . . . 11
⊢
((♯‘𝐴)
∈ ℕ0 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ⊆ (0...((♯‘𝐴) + (♯‘𝐵)))) |
17 | 16 | sseld 3916 |
. . . . . . . . . 10
⊢
((♯‘𝐴)
∈ ℕ0 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) → 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))) |
18 | 14, 17 | anim12d 608 |
. . . . . . . . 9
⊢
((♯‘𝐴)
∈ ℕ0 → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))))) |
19 | 10, 18 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))))) |
20 | 19 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))))) |
21 | 9, 20 | syl5bi 241 |
. . . . . 6
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))))) |
22 | 21 | imp 406 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))) |
23 | | swrdccatfn 14365 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) Fn (0..^(𝑁 − 𝑀))) |
24 | 22, 23 | syldan 590 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) Fn (0..^(𝑁 − 𝑀))) |
25 | | fzmmmeqm 13218 |
. . . . . . 7
⊢ (𝑀 ∈ (𝐿...𝑁) → ((𝑁 − 𝐿) − (𝑀 − 𝐿)) = (𝑁 − 𝑀)) |
26 | 25 | oveq2d 7271 |
. . . . . 6
⊢ (𝑀 ∈ (𝐿...𝑁) → (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿))) = (0..^(𝑁 − 𝑀))) |
27 | 26 | fneq2d 6511 |
. . . . 5
⊢ (𝑀 ∈ (𝐿...𝑁) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) Fn (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿))) ↔ ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) Fn (0..^(𝑁 − 𝑀)))) |
28 | 27 | ad2antrl 724 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) Fn (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿))) ↔ ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) Fn (0..^(𝑁 − 𝑀)))) |
29 | 24, 28 | mpbird 256 |
. . 3
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) Fn (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) |
30 | | simplr 765 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐵 ∈ Word 𝑉) |
31 | | elfzmlbm 13295 |
. . . . 5
⊢ (𝑀 ∈ (𝐿...𝑁) → (𝑀 − 𝐿) ∈ (0...(𝑁 − 𝐿))) |
32 | 31 | ad2antrl 724 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑀 − 𝐿) ∈ (0...(𝑁 − 𝐿))) |
33 | | lencl 14164 |
. . . . . . . 8
⊢ (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈
ℕ0) |
34 | 33 | nn0zd 12353 |
. . . . . . 7
⊢ (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℤ) |
35 | 34 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (♯‘𝐵) ∈ ℤ) |
36 | | elfzmlbp 13296 |
. . . . . 6
⊢
(((♯‘𝐵)
∈ ℤ ∧ 𝑁
∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) |
37 | 35, 36 | sylan 579 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) |
38 | 37 | adantrl 712 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) |
39 | | swrdvalfn 14292 |
. . . 4
⊢ ((𝐵 ∈ Word 𝑉 ∧ (𝑀 − 𝐿) ∈ (0...(𝑁 − 𝐿)) ∧ (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) → (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉) Fn (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) |
40 | 30, 32, 38, 39 | syl3anc 1369 |
. . 3
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉) Fn (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) |
41 | | simpll 763 |
. . . . . . 7
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
42 | | elfzelz 13185 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (𝐿...𝑁) → 𝑀 ∈ ℤ) |
43 | | zaddcl 12290 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ) |
44 | 43 | expcom 413 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑘 + 𝑀) ∈ ℤ)) |
45 | 42, 44 | syl 17 |
. . . . . . . . 9
⊢ (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ ℤ → (𝑘 + 𝑀) ∈ ℤ)) |
46 | 45 | ad2antrl 724 |
. . . . . . . 8
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑘 ∈ ℤ → (𝑘 + 𝑀) ∈ ℤ)) |
47 | | elfzoelz 13316 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿))) → 𝑘 ∈ ℤ) |
48 | 46, 47 | impel 505 |
. . . . . . 7
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) → (𝑘 + 𝑀) ∈ ℤ) |
49 | | df-3an 1087 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ ℤ) ↔ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑘 + 𝑀) ∈ ℤ)) |
50 | 41, 48, 49 | sylanbrc 582 |
. . . . . 6
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ ℤ)) |
51 | | ccatsymb 14215 |
. . . . . 6
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ ℤ) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = if((𝑘 + 𝑀) < (♯‘𝐴), (𝐴‘(𝑘 + 𝑀)), (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴))))) |
52 | 50, 51 | syl 17 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = if((𝑘 + 𝑀) < (♯‘𝐴), (𝐴‘(𝑘 + 𝑀)), (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴))))) |
53 | | elfz2 13175 |
. . . . . . . . 9
⊢ (𝑀 ∈ (𝐿...𝑁) ↔ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
54 | | zre 12253 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐿 ∈ ℤ → 𝐿 ∈
ℝ) |
55 | | zre 12253 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
56 | 54, 55 | anim12i 612 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿 ∈ ℝ ∧ 𝑀 ∈
ℝ)) |
57 | | elnn0z 12262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ0
↔ (𝑘 ∈ ℤ
∧ 0 ≤ 𝑘)) |
58 | | zre 12253 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℝ) |
59 | | 0re 10908 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 0 ∈
ℝ |
60 | 59 | jctl 523 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐿 ∈ ℝ → (0 ∈
ℝ ∧ 𝐿 ∈
ℝ)) |
61 | 60 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (0
∈ ℝ ∧ 𝐿
∈ ℝ)) |
62 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑘 ∈ ℝ ∧ 𝑀 ∈
ℝ)) |
63 | 62 | adantrl 712 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝑘 ∈ ℝ ∧ 𝑀 ∈
ℝ)) |
64 | | le2add 11387 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((0
∈ ℝ ∧ 𝐿
∈ ℝ) ∧ (𝑘
∈ ℝ ∧ 𝑀
∈ ℝ)) → ((0 ≤ 𝑘 ∧ 𝐿 ≤ 𝑀) → (0 + 𝐿) ≤ (𝑘 + 𝑀))) |
65 | 61, 63, 64 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0
≤ 𝑘 ∧ 𝐿 ≤ 𝑀) → (0 + 𝐿) ≤ (𝑘 + 𝑀))) |
66 | | recn 10892 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐿 ∈ ℝ → 𝐿 ∈
ℂ) |
67 | 66 | addid2d 11106 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐿 ∈ ℝ → (0 +
𝐿) = 𝐿) |
68 | 67 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (0 +
𝐿) = 𝐿) |
69 | 68 | breq1d 5080 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 +
𝐿) ≤ (𝑘 + 𝑀) ↔ 𝐿 ≤ (𝑘 + 𝑀))) |
70 | 65, 69 | sylibd 238 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0
≤ 𝑘 ∧ 𝐿 ≤ 𝑀) → 𝐿 ≤ (𝑘 + 𝑀))) |
71 | | simprl 767 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → 𝐿 ∈
ℝ) |
72 | | readdcl 10885 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑘 + 𝑀) ∈ ℝ) |
73 | 72 | adantrl 712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝑘 + 𝑀) ∈ ℝ) |
74 | 71, 73 | lenltd 11051 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝐿 ≤ (𝑘 + 𝑀) ↔ ¬ (𝑘 + 𝑀) < 𝐿)) |
75 | 70, 74 | sylibd 238 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0
≤ 𝑘 ∧ 𝐿 ≤ 𝑀) → ¬ (𝑘 + 𝑀) < 𝐿)) |
76 | 75 | expd 415 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (0 ≤
𝑘 → (𝐿 ≤ 𝑀 → ¬ (𝑘 + 𝑀) < 𝐿))) |
77 | 76 | com12 32 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 ≤
𝑘 → ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝐿 ≤ 𝑀 → ¬ (𝑘 + 𝑀) < 𝐿))) |
78 | 77 | expd 415 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ≤
𝑘 → (𝑘 ∈ ℝ → ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 ≤ 𝑀 → ¬ (𝑘 + 𝑀) < 𝐿)))) |
79 | 58, 78 | mpan9 506 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℤ ∧ 0 ≤
𝑘) → ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 ≤ 𝑀 → ¬ (𝑘 + 𝑀) < 𝐿))) |
80 | 57, 79 | sylbi 216 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ0
→ ((𝐿 ∈ ℝ
∧ 𝑀 ∈ ℝ)
→ (𝐿 ≤ 𝑀 → ¬ (𝑘 + 𝑀) < 𝐿))) |
81 | 56, 80 | mpan9 506 |
. . . . . . . . . . . . . . 15
⊢ (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℕ0)
→ (𝐿 ≤ 𝑀 → ¬ (𝑘 + 𝑀) < 𝐿)) |
82 | 1 | breq2i 5078 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 + 𝑀) < 𝐿 ↔ (𝑘 + 𝑀) < (♯‘𝐴)) |
83 | 82 | notbii 319 |
. . . . . . . . . . . . . . 15
⊢ (¬
(𝑘 + 𝑀) < 𝐿 ↔ ¬ (𝑘 + 𝑀) < (♯‘𝐴)) |
84 | 81, 83 | syl6ib 250 |
. . . . . . . . . . . . . 14
⊢ (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℕ0)
→ (𝐿 ≤ 𝑀 → ¬ (𝑘 + 𝑀) < (♯‘𝐴))) |
85 | 84 | ex 412 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ ℕ0
→ (𝐿 ≤ 𝑀 → ¬ (𝑘 + 𝑀) < (♯‘𝐴)))) |
86 | 85 | com23 86 |
. . . . . . . . . . . 12
⊢ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿 ≤ 𝑀 → (𝑘 ∈ ℕ0 → ¬
(𝑘 + 𝑀) < (♯‘𝐴)))) |
87 | 86 | 3adant2 1129 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿 ≤ 𝑀 → (𝑘 ∈ ℕ0 → ¬
(𝑘 + 𝑀) < (♯‘𝐴)))) |
88 | 87 | imp 406 |
. . . . . . . . . 10
⊢ (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝐿 ≤ 𝑀) → (𝑘 ∈ ℕ0 → ¬
(𝑘 + 𝑀) < (♯‘𝐴))) |
89 | 88 | adantrr 713 |
. . . . . . . . 9
⊢ (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁)) → (𝑘 ∈ ℕ0 → ¬
(𝑘 + 𝑀) < (♯‘𝐴))) |
90 | 53, 89 | sylbi 216 |
. . . . . . . 8
⊢ (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ ℕ0 → ¬
(𝑘 + 𝑀) < (♯‘𝐴))) |
91 | 90 | ad2antrl 724 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑘 ∈ ℕ0 → ¬
(𝑘 + 𝑀) < (♯‘𝐴))) |
92 | | elfzonn0 13360 |
. . . . . . 7
⊢ (𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿))) → 𝑘 ∈ ℕ0) |
93 | 91, 92 | impel 505 |
. . . . . 6
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) → ¬ (𝑘 + 𝑀) < (♯‘𝐴)) |
94 | 93 | iffalsed 4467 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) → if((𝑘 + 𝑀) < (♯‘𝐴), (𝐴‘(𝑘 + 𝑀)), (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴)))) = (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴)))) |
95 | | zcn 12254 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℂ) |
96 | 95 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈
ℂ) |
97 | | zcn 12254 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
98 | 97 | ad2antlr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈
ℂ) |
99 | | zcn 12254 |
. . . . . . . . . . . . . . . 16
⊢ (𝐿 ∈ ℤ → 𝐿 ∈
ℂ) |
100 | 99 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝐿 ∈
ℂ) |
101 | 96, 98, 100 | addsubassd 11282 |
. . . . . . . . . . . . . 14
⊢ (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑀) − 𝐿) = (𝑘 + (𝑀 − 𝐿))) |
102 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝐿 = (♯‘𝐴) → ((𝑘 + 𝑀) − 𝐿) = ((𝑘 + 𝑀) − (♯‘𝐴))) |
103 | 102 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝐿 = (♯‘𝐴) → (((𝑘 + 𝑀) − 𝐿) = (𝑘 + (𝑀 − 𝐿)) ↔ ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀 − 𝐿)))) |
104 | 101, 103 | syl5ib 243 |
. . . . . . . . . . . . 13
⊢ (𝐿 = (♯‘𝐴) → (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀 − 𝐿)))) |
105 | 1, 104 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀 − 𝐿))) |
106 | 105 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀 − 𝐿)))) |
107 | 106 | 3adant2 1129 |
. . . . . . . . . 10
⊢ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀 − 𝐿)))) |
108 | 107 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁)) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀 − 𝐿)))) |
109 | 53, 108 | sylbi 216 |
. . . . . . . 8
⊢ (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀 − 𝐿)))) |
110 | 109 | ad2antrl 724 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀 − 𝐿)))) |
111 | 110, 47 | impel 505 |
. . . . . 6
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀 − 𝐿))) |
112 | 111 | fveq2d 6760 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) → (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴))) = (𝐵‘(𝑘 + (𝑀 − 𝐿)))) |
113 | 52, 94, 112 | 3eqtrd 2782 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = (𝐵‘(𝑘 + (𝑀 − 𝐿)))) |
114 | | ccatcl 14205 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉) |
115 | 114 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐴 ++ 𝐵) ∈ Word 𝑉) |
116 | 11 | biimpi 215 |
. . . . . . . . . 10
⊢
((♯‘𝐴)
∈ ℕ0 → (♯‘𝐴) ∈
(ℤ≥‘0)) |
117 | 1, 116 | eqeltrid 2843 |
. . . . . . . . 9
⊢
((♯‘𝐴)
∈ ℕ0 → 𝐿 ∈
(ℤ≥‘0)) |
118 | | fzss1 13224 |
. . . . . . . . 9
⊢ (𝐿 ∈
(ℤ≥‘0) → (𝐿...𝑁) ⊆ (0...𝑁)) |
119 | 10, 117, 118 | 3syl 18 |
. . . . . . . 8
⊢ (𝐴 ∈ Word 𝑉 → (𝐿...𝑁) ⊆ (0...𝑁)) |
120 | 119 | sselda 3917 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ (𝐿...𝑁)) → 𝑀 ∈ (0...𝑁)) |
121 | 120 | ad2ant2r 743 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ (0...𝑁)) |
122 | 1, 7 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) |
123 | 10, 116, 15 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ Word 𝑉 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ⊆ (0...((♯‘𝐴) + (♯‘𝐵)))) |
124 | 123 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ⊆ (0...((♯‘𝐴) + (♯‘𝐵)))) |
125 | 124 | sseld 3916 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) → 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))) |
126 | 125 | impcom 407 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ∧ (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) → 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))) |
127 | | ccatlen 14206 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
128 | 127 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (0...(♯‘(𝐴 ++ 𝐵))) = (0...((♯‘𝐴) + (♯‘𝐵)))) |
129 | 128 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))) ↔ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))) |
130 | 129 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ∧ (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) → (𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))) ↔ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))) |
131 | 126, 130 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ∧ (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) |
132 | 131 | ex 412 |
. . . . . . . . 9
⊢ (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))) |
133 | 122, 132 | sylbi 216 |
. . . . . . . 8
⊢ (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))) |
134 | 133 | impcom 407 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) |
135 | 134 | adantrl 712 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) |
136 | 115, 121,
135 | 3jca 1126 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))) |
137 | 26 | eleq2d 2824 |
. . . . . . 7
⊢ (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿))) ↔ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) |
138 | 137 | ad2antrl 724 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿))) ↔ 𝑘 ∈ (0..^(𝑁 − 𝑀)))) |
139 | 138 | biimpa 476 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) → 𝑘 ∈ (0..^(𝑁 − 𝑀))) |
140 | | swrdfv 14289 |
. . . . 5
⊢ ((((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑘 ∈ (0..^(𝑁 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀))) |
141 | 136, 139,
140 | syl2an2r 681 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀))) |
142 | 34, 36 | sylan 579 |
. . . . . . 7
⊢ ((𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) |
143 | 142 | ad2ant2l 742 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) |
144 | 30, 32, 143 | 3jca 1126 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐵 ∈ Word 𝑉 ∧ (𝑀 − 𝐿) ∈ (0...(𝑁 − 𝐿)) ∧ (𝑁 − 𝐿) ∈ (0...(♯‘𝐵)))) |
145 | | swrdfv 14289 |
. . . . 5
⊢ (((𝐵 ∈ Word 𝑉 ∧ (𝑀 − 𝐿) ∈ (0...(𝑁 − 𝐿)) ∧ (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) ∧ 𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) → ((𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)‘𝑘) = (𝐵‘(𝑘 + (𝑀 − 𝐿)))) |
146 | 144, 145 | sylan 579 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) → ((𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)‘𝑘) = (𝐵‘(𝑘 + (𝑀 − 𝐿)))) |
147 | 113, 141,
146 | 3eqtr4d 2788 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁 − 𝐿) − (𝑀 − 𝐿)))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝑘) = ((𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)‘𝑘)) |
148 | 29, 40, 147 | eqfnfvd 6894 |
. 2
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) |
149 | 148 | ex 412 |
1
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉))) |